看漫画 首页 名著 中国名著 外国名著 玄幻科幻 都市言情 历史军事 排行 免费
搜索
今日热搜
消息
历史

你暂时还没有看过的小说

「 去追一部小说 」
查看全部历史
收藏

同步收藏的小说,实时追更

你暂时还没有收藏过小说

「 去追一部小说 」
查看全部收藏

金币

0

月票

0

第十一章 创世年代_从一到无穷大

作者:乔治·伽莫夫 字数:11461 更新:2025-01-10 13:59:26

一、行星的诞生

对我们这些生活在世界七大洲(包括南极洲在内)的人来说,“地面”一词几乎与稳定持久同义。对我们而言,地球表面的所有那些熟悉特征,它的大洲大洋、山川河流,仿佛自开天辟地以来就存在着。诚然,地质学的历史资料表明,地球表面一直在不断变化,大面积的陆地可能被海水淹没,被淹没的土地也可能露出水面。我们还知道,古老的山脉会逐渐被雨水冲刷,新的山脊也会因地壳活动而不时产生,但所有这些变化仍然只是坚固的地壳发生的变化。

但不难看出,必定曾有一段时间,根本没有这种坚固的地壳存在,那时地球是一个灼热的熔岩球体。事实上,对地球内部的研究表明,大部分地球仍然处于熔融状态。我们不经意说出的“地面”其实只是浮在岩浆表面的一层薄壳。要想得出这个结论,最简单的方法就是测量地下不同深度的温度。结果表明,深度每下降1千米,温度就上升约30℃(或每下降1千英尺,温度就上升16℉)。因此,比如在世界上最深的矿井(南非的罗宾逊金矿)中,井壁是如此灼热,以至于必须设置一种能调节空气的植物,否则矿工们会被活活烤熟。

按照这种增长率,到了地下50公里也就是不及地球半径百分之一的地方,温度就会达到岩石的熔点(1 200℃到1 800℃)。继续往下,占地球物质逾97%的物质都必定处于完全熔融的状态。

这种状况显然不可能永远存在。我们现在看到的仍然是一个逐渐冷却过程的某个阶段,该过程开始时,地球还是一个完全的熔融体,未来结束时,整个地球将完全凝固。由冷却速率和地壳生长的速率粗略计算一下即可得知,这个冷却过程必定开始于几十亿年前。

通过估算形成地壳的岩石的年龄,也可以得到同样的数字。虽然初看起来,岩石好像没有显示出可变的特征,因而会有“不变如岩石”这种说法,但实际上,其中许多岩石都含有一种天然时钟,它能使富有经验的地质学家判断出这些岩石从之前的熔融状态到凝固经过了多少时间。

这种暴露岩石年龄的地质钟正是微量的铀和钍,它们常常可见于地面和地下不同深度的岩石。我们曾在 为了确定含有这些放射性元素的岩石的年龄,我们只需测定出因数个世纪的放射性衰变而积累起来的铅的含量。

事实上,只要岩石物质处于熔融状态,放射性衰变的产物就会经由熔融物质的扩散和对流过程而离开原来的位置。然而一旦熔融物质凝固成岩石,铅就会和放射性元素一起开始积累,其数量可以使我们精确地知道这个过程持续了多长时间。这就如同根据散落在两座太平洋岛屿上的棕榈林中的空啤酒瓶的相对数目,敌军的间谍就能判断出一只海军部队在每个岛屿驻扎过多长时间。

最近一些研究利用更先进的技术精确测定了铅同位素以及铷87、钾40等不稳定化学同位素在岩石中的积累量,估算出已知最古老岩石的年龄大约为45亿年。因此我们推断,地壳一定是大约50亿年前由熔融物质形成的。

于是我们可以想象出这样一幅画面:50亿年前的地球是一个完全熔融的球形体,外面包裹着很厚的大气层,其中有空气、水蒸气以及其他一些挥发性很强的物质。

这团炽热的宇宙物质又是如何产生的呢?其形成是受了何种力的作用呢?这些关乎地球起源以及太阳系其他行星起源的问题一直是宇宙起源论的基本研究对象,许多个世纪以来,这些谜团一直让天文学家们绞尽脑汁。

1749年,著名的法国博物学家布丰 为了处理这个问题,我们先选择一组微粒,它们绕太阳旋转的周期相同。其中一些微粒沿着某一半径的圆周轨道运转,另一些则沿着拉长程度不等的椭圆轨道运转(图119a)。现在,我们试着从一个围绕太阳中心旋转并且与微粒周期相同的坐标系(X,Y)的角度来描述这些微粒的运动。

a. 从静止坐标系上观察到的圆周运动和椭圆运动;b. 从旋转坐标系上观察到的圆周运动和椭圆运动

图119

从这个旋转的坐标系来看,沿圆周轨道运动的微粒A显然将永远静止于某点A′,而正在沿椭圆轨道绕太阳运转的微粒B则有时接近太阳,有时远离太阳;它围绕中心的角速度接近太阳时大,远离太阳时小;于是,它有时会超前于、有时会落后于匀速旋转的坐标系(X,Y)。不难看出,从这个坐标系来看,此微粒将会描出一条蚕豆形的封闭轨迹,在图119中标为B′。另一个微粒C沿着拉得更长的轨道运转,从坐标系(X,Y)来看,它也会描出一条类似但稍大的蚕豆形封闭轨迹C′。

显然,要想安排这群微粒的运动使之不致相撞,必须使这些微粒在匀速旋转的坐标系(X,Y)中描出的蚕豆形轨迹不会相交。

我们还记得,运转周期相同的微粒与太阳的平均距离是相同的,因此它们在坐标系(X,Y)中不相交的轨迹图案一定像一串围绕太阳的“蚕豆项链”。

以上分析对于读者来说可能有些难懂,但它所表述的其实是一种非常简单的程序,其目的在于表明与太阳有相同平均距离因而有相同旋转周期的各组微粒不致相交的交通规则图样。由于原始太阳周围的那些尘埃云微粒会有各种各样的平均距离,从而有各种各样的旋转周期,所以实际情况一定会复杂得多。“蚕豆项链”不会只有一串,而是必定有很多串在以各种速度相对于彼此旋转。魏茨泽克认真分析了这种情况,他表明,要使这样一个系统保持稳定,每条“项链”都必须包含五个涡旋系统,于是整个运动情况看起来就像图120那样。这种安排可以保证每一个环内“交通安全”,但由于这些环的旋转周期各不相同,所以在两环相遇的地方一定有“交通事故”发生。在一个环的微粒与相邻环的微粒之间的这些边界区域发生的大量碰撞必然会引发积聚过程,在这些特定距离上生长出越来越大的物体。于是,随着每个环内的物质变得逐渐稀薄,它们之间的边界区域会逐渐积聚物质,最后形成行星。

图120 太阳原始外层中的尘埃通道

对太阳系形成过程的上述描绘简单地解释了支配行星轨道半径的旧规则。事实上,简单的几何思考表明,在图120所示的那种图样中,相邻环的相继界线的半径形成了一个简单的几何级数,每一项都是前一项的二倍。我们还能看到为什么指望这条规则会非常精确。事实上,这条规则并非源于支配原始尘埃云中微粒运动的某条严格定律,而只是表达了否则便不规则的尘埃运动过程的某种倾向。

同样的规则也适用于太阳系中各个行星的卫星,这一事实暗示,卫星的形成过程大致也遵循着同样的途径。当原始太阳周围的尘埃云分解成了将会形成行星的各组微粒时,此过程在各组微粒中均得到重复:大多数微粒聚集在中心形成行星,其余微粒则在周围运转,逐渐凝聚成若干卫星。

在讨论尘埃微粒的相互碰撞和生长时,我们忘了讲占原始太阳包层总质量大约99%的气体成分的去向。这个问题比较容易回答。

当尘埃微粒碰来碰去,形成越来越大的物体时,无法参与这一过程的气体会逐渐消散到星际空间中。用比较简单的计算就能表明,这种消散过程需要大约1亿年的时间,也就是说与行星生长的时间差不多。因此,当各个行星最终形成时,构成原始太阳包层的大部分氢和氦均已逃离太阳系,只留下了微乎其微的一部分,即前面所说的黄道光。

魏茨泽克理论的一个重要推论是,行星系的形成并非独特事件,几乎所有恒星在形成过程中都会发生这种现象。而碰撞理论则认为,行星的形成过程在宇宙历史中非常独特。计算表明,被认为产生了行星系的恒星碰撞是极为稀罕的事件,在构成银河系的400亿颗恒星当中,在其存在的几十亿年时间里,只可能发生过少数几次碰撞。

如果每颗恒星都有一个行星系统,那么单单在我们的银河系之内就会有数百万颗行星,它们的物理条件几乎与地球上相同。倘若在这些“可居住”的世界中竟然没有孕育出最高形态的生命,那才奇怪呢。

事实上,我们在 在不久的将来,我们会乘坐“核动力推进的太空飞船”作探险旅行,到火星和金星(太阳系中最“可居住”的行星)上去研究那里可能有的生命形态,然而在千百光年以外的其他星界上是否存在着生命以及生命以何种形态存在,则可能是一个永远无解的科学问题。

二、恒星的“私生活”

关于恒星如何产生自己的行星家族,我们已经有了一幅较为完整的图像,现在我们要讨论一下恒星本身了。

恒星有怎样的生命历程?其诞生的细节如何?漫长的生命是如何度过的?最终又有什么样的结局?

要研究这类问题,我们不妨先从太阳入手,因为它是组成银河系的数十亿颗恒星中相当典型的一颗。首先,我们知道,太阳是一颗非常古老的恒星,因为根据古生物学的资料,它已经强度不变地照耀了几十亿年,维持着地球上生命的发展。任何普通来源都不可能在这么长的时间里提供如此之多的能量,所以太阳的辐射问题始终是最令人迷惑的科学谜团之一。直到发现了元素的放射性衰变和人工嬗变,隐藏在原子核深处的巨大能量源才被揭示出来。我们已经在 这样的高温在地球实验室里几乎无法获得,而在星际世界却司空见惯。以太阳为例,它的表面温度只有6 000℃,但越往里温度就越高,到了中心则高达2 000万度。根据观测到的太阳表面温度和太阳气体已知的热传导性质,不难计算出这个数值。正如知道了一颗土豆的表皮有多热以及土豆物质的热导率,无需切开就可以计算出它内部的温度。

将这种关于太阳中心温度的信息与关于各种核嬗变的反应速率的已知事实结合起来,就能查明太阳内部产生的能量是由什么反应引起的。这种重要的核过程叫作“碳循环”,是两位对天体物理学问题感兴趣的核物理学家贝特(Hans Albrecht Bethe)和魏茨泽克同时发现的。

使太阳产生能量的热核过程并不只是单一的核嬗变,而是被称为“链式反应”的一系列相互关联的嬗变。链式反应最有趣的特征之一在于,它是一条闭合的循环链,每经过六步就重新回到起点。图121是这种太阳链式反应的示意图,从中可以看出,这种链式反应的主要参与者是碳核和氮核以及与之碰撞的热质子。

图121 使太阳产生能量的循环链式核反应

让我们从普通的碳(C12)开始,我们看到,它与一个质子碰撞,形成了氮的轻同位素(N13),并以γ射线的形式释放出一些原子内部的能量。这一反应是核物理学家们所熟知的,在实验室条件下已经用人工加速的高能质子实现出来。N13的原子核并不稳定,它会自动释放出一个正电子或β+粒子,变成碳的重同位素(C13)的稳定原子核,普通的煤中就含有少量的C13。如果再被一个热质子撞击,这种碳同位素就会变成普通的氮N14,并且释放出强烈的γ辐射。(我们从N14开始也可以同样方便地描述这个循环。)N14核再与另一个( 各种元素的原子核在俘获高速运动的电子时都会释放中微子。当一个高速电子进入原子核时,会立刻释放出一个高能的中微子。原子核俘获电子后,会变成同一原子量的一种不稳定的核。由于不稳定,这个新原子核存在一段时间之后就会发生衰变,在释放出电子的同时又释放出一个中微子。然后这个过程又从头开始,发射出新的中微子……(图125)。这种过程被称为尤卡过程。

图125 铁核中的尤卡过程可以源源不断地产生中微子

如果温度和密度就像在收缩的星体内部一样大,因释放中微子而导致的能量损失就会极高。例如,铁原子核对电子的俘获和重新释放会转化成每克每秒1011尔格的中微子能量。如果是氧原子核(它所产生的不稳定同位素是放射性的氮,衰变期为9秒),恒星失去的能量甚至可达每克每秒1017尔格。在这种情况下,能量损失是如此之高,只需25分钟恒星就会完全坍缩。

由此可见,中微子辐射从收缩恒星炽热的中心区域开始产生,这种观点可以完全解释恒星坍缩的原因。

不过,虽然释放中微子所导致的能量损失很容易计算出来,但要研究坍缩过程本身还有许多数学上的困难,因此我们目前只能给出某些定性的解释。

可以设想,由于恒星内部的气体压力不够大,星体外围的大量物质将在引力的作用下开始落向中心。但通常情况下,每颗恒星多多少少都在迅速地旋转,因此坍缩过程发生得并不对称,极区的物质(即转轴附近的物质)先落入内部,并把赤道区的物质挤压出来(图126)。

图126 超新星爆发的早期和晚期

这样便把此前深藏的物质带了出来,并把它们加热到几十亿度的高温,此温度解释了恒星亮度为何会骤增。随着这个过程的进行,原先那颗恒星的坍缩物质将在中心收缩成一颗致密的白矮星,被排出的物质则逐渐冷却并继续扩展,形成蟹状星云那种朦胧的东西。

三、原始混沌和膨胀宇宙

若把宇宙看成一个整体,我们立刻就会面临一些重要问题,涉及宇宙是否随时间而演化。宇宙是一直大致处于我们目前看到的这个状态,还是在不同的演化阶段中不断变化?

根据从各种科学分支收集到的经验事实,我们得出了非常明确的回答。是的,我们的宇宙在不断变化。它在远古过去、当下现在和遥远未来的状态是三种非常不同的存在状态。由各门科学搜集来的无数事实还表明,我们的宇宙有一个开端。正是从这个开端开始,宇宙逐渐演化成为现在的状态。如上所述,我们的太阳系已经有几十亿岁了,从各个方向对这个问题所作的许多独立研究中都会出现这个数字。月亮也应该形成于几十亿年前,它似乎是被太阳发出的强大吸引力从地球上扯下来的一块物质。

对恒星演化的研究(见上节)表明,我们看到的星星大都也有几十亿年了。通过一般地研究恒星的运动,特别是双星、三星以及更复杂的银河星团的相对运动,天文学家们断言,这些构形的存在时间不会长于几十亿年。

各种化学元素的相对丰度,特别是钍、铀等缓慢衰变的放射性元素的量,可以提供一些非常独立的证据。如果这些元素在不断衰变的情况下仍然存在于宇宙中,我们就只能认为,要么这些元素目前还在由其他更轻的原子核不断产生,要么就是大自然在遥远过去所形成产物的遗存。

我们目前对核嬗变过程的了解迫使我们放弃 在研究来自这些遥远星系的光谱时,威尔逊山的天文学家哈勃发现这些谱线都朝光谱的红端移动了一点点,而且星系越远,这种“红移”就越大。事实上我们发现,不同星系的“红移”大小正比于它们与我们的距离。

对于这种现象,最自然的解释是假设所有星系都在远离我们,而且离我们越远,速度就越大。这种解释建立在所谓“多普勒效应”的基础上:光源接近我们时,光的颜色就会向光谱的紫端移动;光源远离我们时,光的颜色就会向红端移动。当然,要想获得明显的谱线移动,光源与观察者的相对速度必须很大。伍德(R. W. Wood)教授曾因在巴尔的摩闯红灯而被拘捕。他告诉法官,由于这种现象,红光在他看来是绿色的,因为他正在乘车接近信号灯。这位教授纯粹是在愚弄法官。倘若法官物理学懂得再多一点,他就会问伍德教授,要把红光看成绿光,其驾驶速度得有多高才行,然后再以超速的理由罚钱!

让我们回到星系的“红移”问题上来。初看起来,我们的结论有些尴尬。宇宙中的所有星系仿佛都在远离我们的银河系,难道银河系是一个巨大的怪物吗?它能有什么可怕的性质呢?它看起来为何如此与众不同?对这个问题稍加考虑就会发现,我们的银河系并没有什么特殊之处,事实上,其他星系并非只远离它,而是所有星系都在彼此远离。设想有一个气球,上面涂有一个个小圆点(图127)。若把气球吹得越来越大,则各点之间的距离将会不断增加,待在任何一个圆点上的昆虫都会以为,所有其他各点都在“逃离”它这个点。不仅如此,在这个膨胀的气球上,各个点的退行速度将与它们和昆虫的观测点之间的距离成正比。

图127 气球膨胀时,其上各点都在彼此远离

这个例子清楚地表明,哈勃观测到的星系后退与我们银河系所具有的特殊性质或所处的特殊位置毫无关系,而只是因为散布在宇宙空间中的各个星系总体上在均匀膨胀罢了。

根据观测到的膨胀速度和目前相邻星系之间的距离,很容易计算出,这个膨胀至少始于50亿年前。93

在此之前,被我们称为星系的各个星云正在形成均匀分布在整个宇宙空间中的恒星。沿时间继续往前,这些恒星本身也都紧紧挤在一起,使宇宙中充满了连续分布的炽热气体。再往前,这种气体越来越致密和炽热,这显然是形成各种化学元素(特别是放射性元素)的时期。再往前一步,宇宙物质都被挤成了我们在 现在让我们把这些观测结果整合起来,按正确的顺序看看宇宙演化发展的标志性事件吧。

故事始于宇宙的胚胎阶段,那时威尔逊山望远镜(即半径在5 亿光年范围内)视野范围内的一切物质都被挤在一个半径只有太阳半径8倍左右的球内。94但这种极为致密的状态不会持续很久,因为只需两秒钟,迅速的膨胀就会使宇宙密度下降到水密度的几百万倍,几小时后就会下降到水的密度。大概在这个时候,以前连续的气体分裂成了现在构成一颗颗恒星的各个气体球。因持续膨胀而被分开的这些恒星后来又形成了被我们称为星系的各个星云,它们至今仍然在彼此后退,进入未知的宇宙深处。

我们现在可以追问:是什么样的力导致了宇宙膨胀呢?这种膨胀会不会停止,甚至变成收缩呢?正在膨胀的宇宙是否有可能转过头来,将银河系、太阳、地球和人重新挤成具有原子核密度的浆状物呢?

根据基于非常可靠的信息所得出的结论,这种事情绝不可能发生。很久以前,在宇宙演化的早期阶段,膨胀的宇宙冲破了所有可能将它维持在一起的锁链,正按照简单的惯性定律无限膨胀下去。这锁链就是阻碍宇宙物质分离的引力。

让我们举一个简单的例子进行说明。假定从地球表面向太空发射一枚火箭。我们知道,包括著名的V-2火箭在内的所有火箭都没有足够的推进力进入太空。它们在重力的作用下会停止上升,落回地球。但如果能使火箭的初始速度超过每秒11公里(在原子喷气推进式火箭的发展中,这个目标似乎是可以实现的),它就能摆脱地球重力的吸引而进入太空,并且不受阻碍地持续运动下去。每秒11公里的速度通常被称为摆脱地球重力的“逃逸速度”。

现在设想有一枚炮弹在空中爆炸了,弹片朝四面八方飞去(图128a)。被爆炸力抛出的弹片抵抗住了把它们拉向共同中心的引力而飞散开来。不用说,在这个例子中,弹片之间的相互吸引力弱到可以忽略不计,根本不会影响它们在空间中的运动。但这种引力如果很强,就能使弹片停止飞行,落回它们共同的引力中心(图128b)。至于这些弹片是落回来还是无限制地飞离,则取决于它们动能和引力势能的相对大小。

图128

将弹片换成星系,就能得出前面描绘的膨胀宇宙图景。但由于各个星系的巨大质量使引力势能变得与动能不相上下,95因此只有认真研究这两种能量才能判定宇宙膨胀的前景。

根据目前掌握的最可靠的星系质量数据,相互远离的星系的动能要比其相互引力势能大好几倍,因此可以推论,我们的宇宙会无限膨胀下去,而不会被引力重新拉近。但要记住,有关整个宇宙的数据大都不够精确,未来的研究也许会把这个结论颠倒过来。不过,即使宇宙真的突然停止膨胀,转而进行收缩,也需要几十亿年的时间。因此,黑人灵歌里所设想的“星星开始坠落”、我们被坍缩星系的重力压得粉身碎骨的那一天还为时尚早。

究竟是什么烈性炸药使宇宙的各个部分以可怕的速度相互飞离呢?对这个问题的回答可能会让你有些失望:也许根本就不曾有过寻常意义上的爆炸。宇宙现在之所以在膨胀,是因为在此之前的某个历史时期(当然没有留下任何历史记</a>录),它曾经从无限收缩成一种极为致密的状态,然后又反弹回来,仿佛是被压缩物质内部的强大弹力所推动。如果你走进一间球室,正好看到一只乒乓球从地板升入空中,你会不假思索地推断说,你进屋之前这只乒乓球一定从某个高度落到了地板上,并且在弹力的作用下再次跳起来。

现在,让我们尽情发挥一下想象力,问问自己在宇宙的压缩阶段,现在发生的一切事物是否是以相反次序发生的。

在80亿年或100亿年前,你是否在从后往前读这本书?那时的人是先从嘴里扯出一只炸鸡,在厨房里使之复活,再把它送到养鸡场吗?而在养鸡场,它是否是先从大鸡长成小鸡,然后缩进蛋壳,最后变成一枚鲜鸡蛋呢?这些问题虽然有趣,却不能从纯科学的角度来回答,因为宇宙的大压缩已将所有物质挤成了一种均匀的核液体,以前各个压缩阶段的所有记录必定已被完全抹掉。

* * *

1 这是就目前最大的望远镜所能探测的那部分宇宙而言。

2 斯塔迪姆(stadium)是古希腊的长度单位,1斯塔迪姆=606英尺6英寸或188米。

3 如果用我们的记数法来表示,这个数是:

一千万     46 在这方面,最新的实验证据表明,中微子的重量还不到电子的十分之一。

47 要记住,银原子核既不发生聚变也不发生裂变。

48 卡是热量单拉,将1克水的温度升高1℃所需的能量为1卡。

49 比如在1克铀材料中,每秒钟有数千个原子裂开。

50 上述过程可以表示成反应式:13Al27+2He4→14Si30+1H1。

51 布莱克特照片(本书未刊登这幅照片)上记录的核反应式是:7N14+ 2He4→8O17+1H1。

52 核反应式为:5B11+1H1→2He4+2He4+2He4。

53 核反应式为:1H2+1H2→1H3+1H1。

54 这里发生的过程的核反应式可以写成以下形式:

(a)中子的产生:4Be9+2He4(镭发射的α粒子)→6C12+0n1

(b)中子轰击氮原子核:7N14+0n1→5B11+2He4。

55 这些数值只是为了举例而给出的,并不对应于任何实际的原子核。

56 更详细的讨论可参见1947年Viking Press出版的Selig Hecht, Exining the Atom。Eugene Rabinowitch博士的增订版收在Explorer平装丛书中。

57 关于铀堆的更详细讨论,请再次参阅原子能的专门书籍。

58 所有数值都是在标准大气压下测得的。

59 参见 60 把金属丝加热到高温状态时,其内部电子的热运动会变得更加剧烈,一些电子会逸出表面。无线电爱好者都知道,该现象已被用于电子管。

61 这里未考虑玩家可随意代替任意一张牌的额外的“百搭”所引起的复杂性。

62 如果可以,请使用计算尺或对数表!

63 英文中小山羊是Kid,基德是Kidd,两者词形和发音都很相像。——译注

64 半径为1的圆的周长是其直径的π倍,即2π,因此四分之一圆周的长度是即。

65 事实上,由于气体分子的间距很大,空间并不拥挤,所以给定体积内虽然有大量分子,但根本不会阻碍新的分子进入。

66 一个10英尺宽、15英尺长、9英尺高的房间的体积为1350立方英尺或5×107厘米3,因此包含5×104克空气。由于空气分子的平均质量为30×1.66×10-24 ≈5×10-23克,所以分子总数为5×104/5×10-23=1027。

67 必须考虑这种一半对一半的分布,因为动量守恒定律使得所有分子不可能都朝同一个方向运动。

68 还有违背能量守恒定律的所谓“ 77 这种说法适用于人类和所有哺乳动物,而对于鸟禽来说,情况则正好相反;公鸡有两条相同的性染色体,而母鸡却有两条不同的性染色体。

78 与大多数其他生物相反,果蝇的染色体非常大,其结构很容易用</a>显微照相来研究。

79 切牌:从一副纸牌中拿起一部分翻转过来以决定由谁发牌﹑谁先出牌等。——译者

80 正常尺寸的染色体都太小了,显微镜研究无法将其分解成单个基因。

81 正如我们已经解释的,“同分异构”是指分子由相同的原子所构成,但原子以不同的方式排列着。

82 突变现象的发现只对达尔文的经典理论作了一点修改,即物种演化缘于不连续的跳跃式变化,而不是缘于达尔文所设想的连续的小变化。

83 实际上,构成病毒微粒的原子数可能比这少得多,因为它们很可能如图103所示“内部是空的”,由旋状的分子链所构成。倘若烟草花叶病毒真有这样一种结构,各种原子团只位于圆柱体的表面上,那么每个病毒微粒的原子总数将会减少到只有几十万个。当然,同样的说法也适用于单个基因里的原子数。

84 更精确地说是0.600″±0.06″。

85 最好是在初夏的晴朗夜晚作这种观察。

86 脉动现象最先发现于造父一,因而以此命名。

87 不要把这些脉动星与所谓的食变星相混淆,后者是由两颗彼此围绕对方旋转并且周期性掩食对方的恒星所组成的系统。

88 地球上的氢大都以它的氧化物——水的形式存在。大家知道,虽然地球表面有3/4的面积被水覆盖,但与整个地球的质量相比,水的质量是很小的。

89 这是形成星际物质的尘粒的近似尺寸。

90 关于生命在地球上的起源和演化,更详细的讨论可参见拙著《地球自传》(1941年首版,1959年修订版)。

91 “红巨星”和“白矮星”这两个名称源于其亮度与表面的关系。由于稀薄的恒星有很大的表面来释放内部产生的能量,所以它们表面温度较低,呈红色;而高密度恒星的表面则必定温度很高,呈白热状态。

92 这是因为根据魏茨泽克的理论,太阳的形成不会比太阳系早很久,而我们地球的估计年龄大致是这么大。

93 根据哈勃的原始数据,两个相邻星系之间的平均距离约为170万光年(1.6×1019公里),其相互退行速度约为每秒300公里。假设宇宙是匀速膨胀的,其膨胀时间即为=5×1016秒=1.8×109年。不过,根据最新数据估计的时间值要更大一些。

94 核液体的密度为1014克/厘米3,而目前空间中物质的平均密度为10-30克/厘米3,所以宇宙的线收缩率为。因此,目前的5×108光年距离在那时只有=10-6光年=1 000万公里。

95 运动粒子的动能与其质量成正比,其相互之间的势能则与质量的平方成正比。

插图1 放大175 000 000倍的六甲基苯分子

插图2

a. 始于云室外壁和中央铅片的宇宙线簇射。磁场使簇射产生的正、负电子沿相反方向偏转。

b.宇宙线微粒在中央隔片中产生核衰变。

插图3 人工加速的微粒引起的原子核嬗变

a.一个快氘核击中云室中重氢气的另一个氘核,产生一个氚核和一个普通的氢核(1D2+1D2→1T3+1H1);

b.一个快质子击中硼核,使之裂成三个相等的部分(5B11+1H1→32He4);

c.一个图中看不见的中子从左边射入,把氮核打碎成一个硼核(向上的径迹)和一个氮核(向下的径迹)(7N14+0n1→5B11+2He4)。

插图4 铀核裂变的云室照片一个中子(当然在图中看不见)击中了横放在云室中的薄铀箔的一个铀核。两条径迹对应着两个裂变碎片分别以1亿电子伏左右的能量飞离。

插图5

a和b.果蝇唾液腺染色体的显微照片,显示了倒置和相互易位;

c.雌性果蝇幼体染色体的显微照片。图中标有X的是紧紧挨在一起的一对X染色体,标有2L和2R的是第二对染色体,标有3L和3R的是第三对,标有4的是第四对。

插图6 这是活的分子吗?放大34 800倍的烟草花叶病病毒微粒。这幅照片是用电子显微镜拍摄的。

插图7

a. 大熊座中的螺旋星云,它是一个遥远的宇宙岛(俯视图);

b. 后发座中的螺旋星云,它是另一个遥远的宇宙岛(侧视图)。

插图8 蟹状星云。1054年,中国天文学家观测到天空中的这个位置有一颗超新星,此蟹状便是这颗超新星爆发时抛出的不断膨胀的气体包层。

打赏
回详情
上一章
下一章
目录
目录( 13
APP
手机阅读
扫码在手机端阅读
下载APP随时随地看
夜间
日间
设置
设置
阅读背景
正文字体
雅黑
宋体
楷书
字体大小
16
月票
打赏
已收藏
收藏
顶部
该章节是收费章节,需购买后方可阅读
我的账户:0金币
购买本章
免费
0金币
立即开通VIP免费看>
立即购买>
用礼物支持大大
  • 爱心猫粮
    1金币
  • 南瓜喵
    10金币
  • 喵喵玩具
    50金币
  • 喵喵毛线
    88金币
  • 喵喵项圈
    100金币
  • 喵喵手纸
    200金币
  • 喵喵跑车
    520金币
  • 喵喵别墅
    1314金币
投月票
  • 月票x1
  • 月票x2
  • 月票x3
  • 月票x5