看漫画 首页 名著 中国名著 外国名著 玄幻科幻 都市言情 历史军事 排行 免费
搜索
今日热搜
消息
历史

你暂时还没有看过的小说

「 去追一部小说 」
查看全部历史
收藏

同步收藏的小说,实时追更

你暂时还没有收藏过小说

「 去追一部小说 」
查看全部收藏

金币

0

月票

0

第六章 环境场—恒常性_格式塔心理学原理

作者:考夫卡 字数:17762 更新:2025-01-09 17:21:27

格局:后象的形状和大小;定位;定位对格局的一般依赖;一般原理:场构成格局的主要方向;由格局的构成而引起的自我定位;在我们的各种例子中一般原理的应用:不变因素;自我定位的特例。格局的恒常性:方向,大小和形状的恒常性。知觉恒常性理论:形状恒常性;大小恒常性;白色和颜色的恒常性。

格局

在上一章中,我们提议对事物和格局(frameworks)进行讨论,并把图形-背景的清晰度(figure-ground artiction)作为那个更为一般问题的一个部分。现在,我们可以进行概括了,以格局为开端,并在结束时补充我们的事物理论</a>。

一切知觉组织都是格局内的组织

现在,我们将证明,一切知觉组织(perceptual organization)都是格局内的组织,或者说,一切知觉组织都依赖于格局内的构造,藉此证明格局的一些显著方面。

关于我们的证明,我们可以重新继续我们在上一章里中断的线索。在上一章里,我们就图形对其背景的功能性依赖作了一些说明。根据这些说明,我们看到一个小的图形形状如何依赖于它得以显现的背景。同样的事实也能够借助后象(after-im-age)来加以说明。如果把一个圆的后象投射到一个正面不相等的平面上,那么后象将呈现为椭圆。

后象的形状和大小

对于形状来说为正确的东西,对于大小来说也同样是正确的,一个后象的大小是该后象被投射之距离的函数。这种关系也有赖于投射的方向,我们已经在 后象的大小所依赖的背景之距离不是客观的或地理的距离(geographical distance),而是现象的或行为的距离(phenomenal orbehavioural distance),对我们当前的目的而言,这是更为重要的事情。弗兰克夫人(Mrs.Frank)受沃克曼(Volkmann)早期实验的影响,在1923年的一个实验中,让她的被试将后象投射在一个平面上,从而在该平面上形成一个关于深的隧道的透视图。接着,后象的大小随着投射于其上的那张纸上的位置而变化;如果它投射在纸上的位置与隧道附近的部分相一致,那么,它就相当地小,如果它投射在纸上的位置与隧道远离的部分相一致,那么,它就相当地大,得出的扩大倍数之比为3:1。毫不奇怪,众所周知的视错觉(optical illusion)现象也显示了同样的结果。在这样一条隧道里所画的两个客观上相等的物体,较近的那个物体看上去会显得较小。

定位

但是,格局也会对定位(localization)产生影响。确实,如果没有稳定的格局,也就不会有稳定的定位,这是一个对空间知觉理论(theory of space perception)来说颇为基本的事实。让我们简要地描述一下海林(Hering)的部位化理论,以便发展我们的论点。在他的理论中,视网膜的每个点都有一对明确的空间值(space values),一个高度值和一个宽度值(height and breadth val-ue),它们与方向相对应,在这个方向上,任何点都会出现,只要将头部竖起,双眼便会沿一个水平面的中央聚焦于一个无限遥远的点上。于是,视网膜中央便将具有“正前方向”的空间值,也就是说,宽度值和高度值都将等于零。垂直地处于上方或下方的点,除了负的和正的高度值以外,其宽度值仍将为零,如果正值是指这些点出现在下方,负值是指这些点出现在正前方向的那个点的上方的话。同理,在中心左右呈水平状的点,其高度值为零,朝着左右两边,其宽度值不断增加。最后,在这一理论中,视网膜的不一致为每个点提供一个深度值(depth value)。我们将在后面讨论深度知觉理论,所以,我们暂且把自己限于前两个维度上。

那么,如何检验这种凝视的视网膜点的空间值理论呢?威塔塞克(Witasek)是这一理论的坚定信奉者,他于1910年建议进行下列实验。让你的被试置于一个完全黑暗的房间里,在被试面前安置一个光点,作为他的凝视点。然后,将若干不同的光点一个接一个地在被试面前呈示,并要求被试指明这些不同的光点出现的方向。在威塔塞克看来,这种实验是必要的,因为它并不完全遵循海林的理论,即认为一个视网膜点的高度值和宽度值随着它们离开中心的距离而成比例地增加。也许,这种关系并不简单,换句话说,视网膜点的现象空间值系统不是一幅标记这些点的几何学位置的地图。由此可见,把一根垂直线与一根水平线相比较,对垂直线的众所周知的过高估计,在这种理论中可由下列假设来解释,即高度值比宽度值增加得更快。

现在,让我们回到威塔塞克的实验上去。该实验从未真正实施过,原因很简单:因为它无法实施。如果你在一个只见一个光点的完全黑暗的房间里呆上一段时间,那么,这个光点不久便会以飘忽不定的方式开始在房间里到处游动,游动范围可以达到90度。在这期间,凝视达到相当完善的程度,那怕是轻微的眼睛抖动也不会产生。吉尔福德和达伦巴哈(Guilford and Dal-lenbach)曾证明,当光点游动范围在1度以下时,眼睛对光点的凝视会产生这种轻微的眼睛抖动。这些“游动”运动(auto-kicmovements)证明,没有凝视的视网膜值属于视网膜点;它们在一个格局中产生部位化,但是,当这种格局丧失以后,便不再产生定位。这种对游动运动的解释是由下述事实所证实的,在对这些游动运动作连续观察以后,我们实验中仍保留着的格局的其余部分也开始丧失其稳定性;例如,观察者脚下的地板和他所坐的椅子都开始晃动了。

定位对格局的一般依赖

游动运动是对一般空间格局的存在和功能性效应的深刻证明,但是,这种格局的运作充斥着我们的整个经验。通过一根垂线,可以在我们眼睛的垂直子午线上投射一根线,如果我站在这根线的前面,并笔直地向前望去的话;或者,用一根水平线,在我们的眼睛上投射一根线,如果这根线正好在我书桌上的那张纸上,而我正好俯视那张桌子的话。同样,也可以用处于垂直和水平两者之间的任何一个位置上的一根线进行投射。而且,一般说来,我可按照实际情况看到这根线是垂直的、水平的或倾斜的。当然,我们知道,线的实际位置不可能对线的现象位置产生任何一种直接的影响;我们排除了对下列问题的这种“首选答案”,该问题是:为什么事物像看上去的那样( 在任何一个特定的时刻,我们视网膜上的垂线将引起一些现象线,它们部分垂直,部分水平,而且往往部分倾斜。此外,正如我们已经指出的那样,在视网膜上经常倾斜的线,像在“正常”条件下产生自垂直线的结果那样,也产生同样的结果。可是,另一方面,当视网膜上的一根垂线在行为环境中产生了一根垂线时,则一根非垂直的线不会被视作垂直线,除非在那个包含着非垂直线的场部分之内有一些特殊的因素在起作用。正因如此,如果一条倾斜的视网膜线使我们见到一条垂线的话,那么,一条垂直的视网膜线将会使我们见到一条斜线。因此,尽管视网膜线的方向是共同决定(codetermines)行为线方向的一个因素,但它不是一个由其自身来作用的因素。

两个问题

我们现在正在处理两个问题。尽管这两个问题彼此密切相关,然而还是可以区分的:(1)等同方向的视网膜线将会同时产生不同方向的行为线;(2)相同的视网膜线,在不同条件下,也就是在不同时间里,将引起不同的行为线。

让我们就这两种情形举一些例子。对于homogeneous field)的结果是一样的。在这两种情形的任何一种情形里,新经验的问世肯定不同于它的后续阶段,在这两种情形里,我们必须考虑刺激的时间过程以及它的空间分布。

由格局的构成而引起的自我定位

关于另一个例子,我只能简要地提一下。这个例子将解释相似的论点。让我们根据同样的论点画两张关于房间的透视图。在一张透视图中,我们面向房间的墙壁,在另一张透视图中,我们稍稍转身,以便我们的脸不再与墙壁平行,我们的眼睛则朝向墙壁的另一部分。这两张透视图是不一致的,而且,相应地说,我们关于房间的视网膜意像,在不同的可见部分的上方,将是不一致的。然而,我们还是见到同样的房间,也就是说,我们的行为环境仍将保持相同;但是,作为经验的一个数据,我们自己在行为环境中的位置将有所不同。我们必须再次超越环境,必须把自我包括在完整的描述之中。现在,我们看到(我们在非视觉的背景前发现的东西),视觉格局如同对行为环境中的物体来说是一种格局一样,对我们的自我来说也是一种格局。

但是,我们的例子须作详尽研究。在两种情形的任何一种情形中,作为我们组织之场的外部条件,我们在自己的视网膜上具有光和颜色的某种分布,它们在两种情形里是不同的。这种差异可以通过不同形状的两个房间来产生,也就是面对主要墙壁时看两个不同形状的房间。在这些条件下,该房间将提供像我们从倾斜位置上看到普通房间一样的投射,也即该房间有点奇怪。因此,问题便成为:为什么我们会在倾斜的位置上见到一个普通的房间,而在正常的位置上却见到奇怪的房间呢?

经验主义解释再次被排斥

传统的心理学,以及吸收许多传统心理学知识的门外汉,将回答道:这是因为,通过经验,我们了解自己的房间。于是,我们可以提出下列问题,当我们获得这种知识的唯一的视觉源泉是视网膜意像时,我们是如何成功地了解我们自己的房间的呢?我不想展开这一论争。读者可以通过亲自实施这种办法来检测他对这种反经验主义论点的理解。读者可以记住我们头部和身体的连续运动,并扪心自问下列问题,为什么从纯粹的经验主义观点出发,正面的平行位置应当成为正常的位置。我将引证一些观察来证明自己的论点,这些观察是与经验主义解释完全抵触的。我们都知道,树木、电线杆、房屋都是垂直站立的。如果一个人坐火车沿山间铁道旅行,铁轨以相当陡的坡度上升,那么这个人从窗外望去便会惊奇地发现,在世界的这些奇怪部分中,树木沿垂直方向以合理的角度生长看,而且,为了与树木保持一致,人们也用同样奇异的方式竖立电线杆和建造他们的房屋。我在最近的一篇论文中(1932年a),报道了另外一个特别引人注目的例子:“在卡尤加湖(Lake Cayuga)的西边,距离水平面约200来英尺的地方,在朝湖边稍稍倾斜的广阔草地上屹立着一幢公共建筑物。对于每个人来说,这幢建筑物看上去以一种十分引人注目的方式向离开湖的方向倾斜。”

在我们的各种例子中一般原理的应用:不变因素

我们将拒绝把经验主义理论作为我们对格局的一种最终解释,但是,我们并不认为经验对它丝毫没有影响。这是因为,在我们目前的知识状况下,这种主张是没有保证的。在我们摆脱了经验主义偏见以后,我们在上述的例子中发现了一个十分简单的原理:行为环境的场部分,作为我们一般的空间格局的一部分,呈现出一种主要的空间方向。让我们看一下该原理在我们的例子中意指什么。当我们通过山间火车的车窗向外望去时,这扇窗便成为空间格局,而且呈现出正常的水平一垂直方向。通过窗子看到的物体轮廓并不与窗框直角相交。因此,如果窗框看上去是水平的话,那么,这些物体看上去便不是垂直的,而是在上坡时斜着离我们远去,在下坡时则迎着我们而来。如果图72提供的有关车窗和电线杆实际位置的图画稍稍有点夸张的话,那么,它同时也表明了,当车窗成为格局,而且被水平一垂直地定向时,为什么电线杆看上去不可能呈垂直方向。人们应做的是,把这张图转过来,使窗的底边保持水平;于是,电线杆就会倾向右边,正如在我们的图画里,车窗向左边倾斜一般。电线杆和窗框之间的角度决定了这两个物体彼此之间的相对定位(rtive localization),而它们的绝对定位(absolute localization)则受制于形成空间格局的那些场部分。如果有人将头伸出窗外,那么电线杆便会立即看上去呈垂直状态;当这个人一面看着那根电线杆,一面把头缩回来时,电线杆仍然保持垂直,可是车窗和整个车厢则是倾斜的。在这两种情境中的一个因素是“不变因素”(invariant),也就是背景和物体之间的角度。

若把同样的原理用于卡尤加湖西岸的房屋,也是很容易的。这里,大草坪提供了背景,从而看上去呈水平状态,而草坪上面的房屋反而呈倾斜状了。人们只需将图73稍稍转动一下,使代表倾斜草坪的那条背景线变成水平状,然后看看发生什么情况就可以了。

我们发现,同样的原理(自然涉及其他一些不变因素)也适用于颜色场和运动场:刺激分布的相对特性决定行为世界中物体和事件的相对特性,但是,后者的绝对特性有赖于一个新因素,这个新因素在我们的空间格局例子中是朝着主要空间方向的这种格局的应力(stress)。

自我定位的特例

我们的原理也适用于房间的例子,即当我们看到房间与墙壁平行或倾斜时的例子。这个例子比我们的上述例子更加复杂,因为它除了方向以外,还涉及其他东西。这个例子中的两个变量是:房间的形状和对于房间来说自我的位置。当我们呈直角地面对房间时,我们看到正常的房间,它具有垂直和水平方向,而我们自己在房间里也处于正常位置。可是,一俟视网膜刺激发生变化,我们也会看到形状古怪的房间,它具有倾斜的侧面,而我们自己也处于倾斜的位置上。如果F代表格局,E代表自我,指数n代表正常,指数a代表异常,那么,我们便可以用如下公式来表示所有不同的可能性: FnEn-FaEa。当然,前项的选择是经常实现的选择:鉴于那种理由,看来也不包括任何问题。但是,一俟我们了解还存在着无数其他的可能性(这些其他的可能性都用FaEa来表示),那么,我们便可以看到这种正常情况也与异常情况一样需要作出解释了。在这种情况下,解释也是特别简单的:格局是正常的,而且,我们知道,一种格局趋向于朝正常方向发展,而自我的位置也是正常的,那就是说,从自我角度看,所谓“正前方向”是指与格局的主要平面之一呈正交状态(perpendicr to)。于是,两种方向系统(一种是由格局施加的方向系统,另一种是有赖于自我的方向系统)在这种情形里发生重合。这两种方向系统之间的冲突可能会明显地干扰我们“正前方”的方向,因为它不仅受制于我们自我的位置,而且也可能受制于格局,受制于这种格局的箭状方向,而不是我们自己的方向;实际上,甚至后一种决定因素也是模棱两可的,它可以指我们的眼睛,我们的头部,或我们的躯干系统。G.E.缪勒(1917年)是constancy)。

大小恒常性的不变因素

我们已经讨论过线的方向、物体的大小和后象都有赖于它们所属的格局。为使这个论点更加清楚,我们可以再次引入我们的不变因素的原理。让我们回忆一下有关一条隧道的透视图的实验。投射于其上的后象是一根线的后象,使该线的长度只有隧道附近垂直边缘长度的一半。这样一来,后象外表的大小将有赖于两个因素:一个因素是后象与隧道投射点上几何学高度的关系,另一个因素是后者的外表大小;这两个大小之间的关系就是不变因素。于是,当后象接近隧道前面边缘时,它看上去大约只有前面边缘的一半大小;如果后象靠近一根垂线,那根垂线看上去进一步深入背后,而且其长度只有前面边缘的一半,那么后象看来就与垂线一样长,因为视网膜竟像是相等的,现在,这种相等性就是不变因素;但是,如果后面那根垂线看上去约与前面边缘一样长,那么,后象也会看作是大的,就是说,现在后象看上去相当于开始时的大小的2倍。

形状恒常性的不变因素

同样的观点也可以用于形状。形状与格局的关系尚不明确,但是,根据上述讨论,我们可以作如下推论。如果一个正方形的面产生了一个正方形的视网膜意像,而且,它在正面的平行位置上作为正方形被看到,那么,投射于其上的一个圆形的后象也会呈现出一个圆来。但是,当这个正方形被旋转,譬如说,围绕一个垂直轴被旋转45度时,它就作为一个不规则四边形被投射到视网膜上了,然而,它在一个非正常的位置中仍然被看作一个正方形。现在,投射到它上面的圆的后象看起来就不再像一个圆了。这是因为,如果一个不规则四边形可以看成是正方形,那么,一个圆便不再看成为一个圆,如果允许我们用某种椭圆来表示的话。相应地,正方形上的一个真正的圆将会在这个新的位置上产生一个椭圆的视网膜意像,但是它仍将被看成是一个圆,这是因为,当某个不规则四边形看上去像正方形时,某种椭圆也会看上去像一个圆。这一原理恰与前述例子中的原理一样。而且,这里的不变因素就是不同形状之间的关系。由于这些关系比之大小和方向的关系来可能较为复杂,因此,这种不变的因素也可能较不完整。在这个领域中,许多有趣的问题等待实验。索利斯(Thouless)报道了一个证明上述关系的独创性实验。“让一名被试坐在一架幻灯下面。面对他视线的是一块正方形的纸板屏幕,屏幕上映出由幻灯投射的形象。现在,如果屏幕在观察者的正面平行面呈一定角度倾斜的话,图像的视网膜意像仍不会改变……。然而,从现象上看,图像变得歪曲,并被侧向拉长。尽管屏幕本身的视网膜竟像被侧向压缩,但现象上它仍与一个正方形极少差别”(1934年)。这已足以证明格局的恒常性和大小、方向、形状的恒常性之间的联结。我们关于知觉的基本事实的解释是非经验主义的。

对这些恒常性的经验主义解释,以及它们受欢迎的原因

然而,这些恒常性现象看来需要经验主义解释。这里,存在着的是恒常的物体和变化的视网膜意像。只要人们不去注视部位的视网膜意像以外的地方,那么,他就不可能了解不同的视网膜意像作为纯粹的感觉资料能够引起一致的形状。于是,人们便求助于经验:我们用这些变化着的视网膜意像所见到的东西,在大多数情况下,或多或少是与现实相一致的,这种现实不能直接地影响我们的感觉器官,以便被正确地见到。由此可见,对经验的求助是不可避免的。我们已经了解到,事物是恒常的,具有如此这般的特性,因此,经验不会对我们的感觉感兴趣,而是对事物感兴趣,我们不知不觉地按照我们对事物的了解来解释我们的感觉。但是,经验主义理论之所以似乎有理,仅仅是因为它暗示着恒常性假设(constancy hypothesis),但是,在这里,它却站不住脚了,正如它在我们遇到的其他领域里站不住脚一样。我们已经通过动物实验对大小恒常性进行了驳斥(参见 对经验主义解释的拒斥并不证明我们是正确的。但是,至少我们可以声称,我们的理论用同样的原理解释了这些情况,它们显然符合经验主义理论——真实的知觉——以及与此不相符合的情况——幻觉。这些原理是十分简单的:用场的主要轮廓沿空间的主要方向建立起一个格局,以及刺激的某些方面之间的一种不变关系,于是不变性原理取代了旧的恒常性假设。

知觉恒常性理论:形状恒常性

即便如此,我们的假设仍是不完全的。该假设认为,如果一种结果b产生的话,那么一种结果a也会产生,但是,它并没有表明在哪些条件下 表7

r

δ

p

a

5

45

10.5

17.75

40

60

20

35

在两个例子中,垂直轴的长度均为20厘米。因此,两种作为刺激的椭圆都具有相等的垂直轴,水平轴分别为10.5和17.75厘米,它们产生了同样的形状,而与这种情况相似的是,水平轴为20和35厘米的两个椭圆刺激也产生了同样知觉到的形状(尽管与 于是,便有可能进行下列推论:最终的平衡将是一种对所有参与的力量来说的平衡。这意味着:知觉到的方向和形状将彼此依赖。如果一个视网膜形状拒绝场力引起的歪曲,那么,它将由此影响方向的表面视角。于是,有了这样一种可能,随着“形状恒常性”的下降,图形表现出来的与正常情况相背的程度也下降,那就是说,知觉到的形状越是与视网膜的形状相似,它与实际的形状便越是不相似。当然,那意味着,形状和方向的某种结合对于一个特定的视网膜形状来说是不变因素,正如我们先前阐述过的那样。

实验证明

我们的若干结论已经得到实验的证实。首先,在通常的情况下,“恒常性”是不完善的,“现象的回归”(Phenomenal regres-sion)也是不完整的,正如艾斯勒(Eissler)、索利斯(Thouless)和克林费格(Klimpfinger)已经发现的那样。其次,恒常性随着方向的角度而减弱(艾斯勒)。该结果是可以从我们的假设中推论出来的,因为视网膜意像与“实际的”形状差别越大,越是需要更大的力量去产生与实际形状相等的知觉到的形状。如果场内的应力(来自非正常方向的应力)随着所需的力量将视网膜形状转变成实际的形状,那么,这种应力就会以同样方式增加,于是,恒常性就不可能成为角度的一种功能。现在,我们尚不了解这两种功能中的任何一种功能,不过,说它们是同一种功能,那是不可能的。让我们从后者开始讨论,即将视网膜形状转变为实际形状的必要力量有赖于方向和角度。按照我们的假设,一种视网膜形状建立起力量,以产生一种相似的心物形状。当形状出现于其中的那个面不正常时,这些力量便与场内的应力发生冲突。由于这种应力,视网膜形状转变成另一种形状,它更像实际的形状。现在,如果视网膜形状和实际形状之间的差别越大(由于图形转动的缘故),那么,把视网膜形状改变成实际形状所需要的力量也越大。然而,说这种关系是一种简单的比例关系,那是不大可能的。从动力角度上讲,更有可能的是,随着这种改变进一步深入,它就变得越发困难,正如一根螺旋弹簧若要产生连续收缩便需要不断增加压力一样。如果我们旋转一个具有水平轴h的图形,使之绕着该图形的垂直轴转动,首先通过某个角度将图形的水平轴减去一定的量m,然后通过另一角度将它的水平轴再减去另一个等量,于是这根水平轴现在该是h-2m。如果需要力量f来把具有水平轴h-2m的图形转化成具有水平轴h的图形,便需要2f以上的力量。现在看来,由于非正常方向,场内的应力要像达到完美的恒定性所要求的力量那样随其角度快速增加是不可能的。恒定性应当像它经常发生的情况那样随角度一起减少。

我在这里使用了“转化”(transformation)这个术语,我的意思并不是指最初的一个非转化形状是由后来成为中心的边缘刺激产生的。我之所以运用这个术语是为了表明一种效应,它将伴随着一组从它们的背景中抽取的力量,由于不同力量的结合而对抗实际结果。这里使用的“转化”术语仅指双倍的向量决定(double vectorial determination),一个从卡多斯(kardos)那里借用的术语(p.170)。

这一例证的不变因素

艾斯勒和霍兰迪所得结果之间的相似性表明了一种原因的相似性。对于大小恒常性来说,如同对于形状恒常性一样,某种结果就特定刺激而言将是不变因素,而且,这种结果将是大小和距离的某种结合。我们已经提及(见边码p.229),霍兰迪的有些结果似乎与这样一种假设相抵触,但是,我也曾经指出,为什么我不能把这些矛盾的结果视作决定性的。这种结合形式必须在今后的实验中设计出来,它将证明这种结合形式有赖于方向,即物体从观察者那里撤回的方向。我们在 对大小而言,没有一组独特的条件

然而,在一个重要的方面,知觉的大小理论肯定与知觉的形状理论有所不同:关于后者,我们已经发现了一个有关正常方向的独特例子,也就是正面平行面。可是,对于大小来说,就不存在任何这类独特的例证,实际上没有一种“正常的”距离可以与正常的方向相比较。一方面,正常的距离对不同物体来说是不同的,例如,对一张印刷纸、一个人、一幢房子、一座山等等,另一方面,这样一种正常距离的范围是相当广泛的,而且不是一个很好界定了的点。但是,在这领域内,其他某种东西起着类似的作用,看来也是有可能的。劳恩斯泰因(Lanenstein)于1934年作了一项观察,按照这个观察,恒常性并非距离的一种简单函数,正如迄今为止人们所假设的那样,而是适用于明确的统一范围,在两种这样的范围之内,它们与观察者处于不同的距离,恒常性差不多同样地良好,尽管相互之间进行比较,较近的范围具有较大程度的恒常性。从这一范围概念出发,正如我们将在后面看到的那样,会在颜色恒常性领域内找到其对应物「卡多斯(Kardos)」,他的结论是,“实际的”(正常的)行为大小可能会出现在把观察者的行为“自我”也包括进去的范围之内。

知觉大小的可能理论

知觉的大小恒常性理论可能导源于知觉空间的理论,这在p.119)已有所表明。如果清晰的空间倾向于变得尽可能大时,它就需要力量以便使一个物体在附近出现。该理论是我在与苛勒(kohler)的一次讨论中了解到的,它提示了以下观点:让物体靠近所耗费的能量越多,使之保持大的可用能量便越少。该证明足以补充以下说法,即邻近性不一定是决定物体大小的唯一因素,还有其他一些因素,它们可能是“清楚”的清晰度,即可视性(surveyabilyty)。视物显小症(micropsia)的事实看来支持了这样一种概括的理论,对于大小理论来说重要的一些事实早就为杨施(Jaensch,1909年)所认识,他在这个问题上首次发表的见解差不多具有划时代的意义。

H.弗兰克的实验

苛勒理论的一种特殊形式已由H.弗兰克(H.Frank)在其实验室中加以测试(1930年)。在关于大小恒常性的普通实验中,两个用来比较的物体交替地被注视,也就是说,把一个在远处被注视的物体与一个在近处被注视的物体进行比较。在一定的范围内,大小恒常性是完善的,因此,同一个地理上的物体在1-2米距离内看上去是相等的,尽管在视网膜意像上,远处物体的面积只有近处物体面积的四分之一。但是,在向近处物体注视改为向远处物体注视时,“调节和聚合的肌肉紧张度下降。因此,如果人们认为,视野会为了‘近刺激’的目的而不得不分离它的一些能量,而这种能量的丧失导致被注视物体相对缩小的话……那么,伴随着‘远刺激’而引起眼部肌肉紧张程度的减少,也就是说,由视野引起能量的较小丧失,将会导致被注视物体的相应扩大,从而或多或少补偿了(中心区域)视网膜意像的缩小”(弗兰克,p.136)。由海林(Hering)等人所作的某些观察看来也证实了这种观点。不过,弗兰克进行了一些量化实验,以便使它服从于一种刻板的检测。把一个被直接注视的正方形连续地与一个在同样客观距离上被观察的正方形进行比较,而这种注视可以近些也可以远些。结果,与海林的观察颇为一致,在一个固定距离内的正方形,当它被注视时,比起当它位于注视点后面时,该正方形就显得大一些,但是比起它位于注视点前面时要更小一些。此外,非注视的正方形的大小随着距离观察者注视点的距离而变化,或多或少像调节和聚合发生的情况那样,除了下述事实,即这种一致性对近的注视点比对远的注视点更好一些。于是,除了在正方形前方和背后的非预示和非解释的注视不对称性以外,原先的假设看来可得到证实了。但是,其效应实在太小,以致于难以解释大小恒常性。让我们来提供一个例子:一个正方形,每条边为8厘米,距离为200厘米。如果在距离观察者90厘米的注视点上进行观察,结果与一个每条边为7.5厘米,距离为200厘米的被注视的正方形相等。在这个范围内,恒常性是完好的,也就是说,8厘米的被注视正方形在90厘米的距离上看上去与200厘米距离的同等正方形相等。由此可见,通过改变与变化了的调节和聚合相伴随的注视,恒常性会略有降低。不过,距离为90厘米的一个正方形的视网膜意像是距离为200厘米的一个同等正方形大小的2倍。这就意味着,一个直径为8厘米,距离为200厘米的物体,如果提供了与一个同样大小但距离为90厘米的物体一样的知觉大小的话,那么,前者的“大小效应”(size effect)比后者大200/90倍。如果这完全是由于能量进入到较近物体的聚合和调节的应变(strain)中去的缘故,那么我们便可作下列的推论了。如果我们在90厘米处望着一个距离为200厘米的物体(8厘米长),那么,根据邻近的调节和聚合,视网膜意像的大小效应是该物体被直接注视时的大小效应的90/200倍。因此,一个物体在200厘米处被直接注视时应该只有8×90/200=3.6厘米,然而在弗兰克的实验中,它的大小为7.5厘米。这种假设等于说,进入调节和聚合的能量恰好补偿了视网膜意像的所得。一个恒定的视网膜意像应当产生与注视的距离成正比的知觉大小。在我们的例子中,缩小的范围从8厘米到3.6厘米,而实际上它只是从8厘米到7.5厘米。所以,尽管调节的注视能量可以对恒常性效应作出贡献,但是充其量也仅仅涉及其中的很小部分。

恒常性的发展

在我们转向颜色恒常性之前,我们还想说最后一点。在维也纳,有人对个体一生中恒常性的发展作了仔细而精心的研究。首先贝尔(Beyrl)在大小领域里进行了研究(见 布伦斯维克在给克林费格附加的一条注释中(1933年a,PP.619 f.)驳斥了有关这一批评的正确性,尽管他接受了这些结果,部分地加以重复,而且并不怀疑在形状领域里可以得到类似的结果。他争辩说,伯兹拉夫方法的缺点是未能反映恒常性的发展,原因是它给观察者安排的任务太容易了。他认为,人们可以降低任务的难度以便让被试去完成,这样一来,便消除了他们之间的一切差异。一位意欲将学生分级的老师绝不会发给他们一份大家都可以得到优良分数的试卷。

我发现,这一论点把恒常性的存在假设为某种绝对的东西,它可以服从于各种难度测验,但始终是同样的恒常性,正如在布伦斯维克的类推中,我可以通过向一名男童口述不同难度的课文来对他的拼音能力进行测验一样。但是,这样一种类推是完全虚构的。这是把恒常性现象视作其自身的某种东西的结果,而不是视作知觉组织过程的有启发价值的方面。维也纳实验仅仅证明,知觉组织在某些条件下对年龄较大儿童比对年龄较小儿童具有“更大的恒常性”;换言之,这些特殊条件在不同年龄具有不同效应。根据这些事实,不难发现这些不同的效应。两个物体的成对比较,尤其当它们在空间上相互接近时,很容易在心物场中使它们之间产生这样一种交流,以至于它们彼此影响。另一方面,如果两个物体中的每一个物体是一组物体中的一员,正如在伯兹拉夫的系列方法中那样,那么要将它们从它们的特定环境中分隔出来会十分困难,要将它们与另一组物体中的一个成员相整合,也会困难得多。因此,如果年幼儿童在使用成对比较方法时比年长儿童表现出较低程度的恒常性,那么,人们可以推论,对年幼儿童来说,由两个相邻刺激引起的兴奋,比年长儿童更具相互依赖性,而在年长儿童身上,这种相互依赖性可能消失了。这种推测已为H.弗兰克的实验(1928年)所证实。她在将自己的方法与贝尔的方法作了比较以后发现(在她自己的方法中,进行比较的两个物体相隔较远),她的方法比贝尔的方法产生更好的恒常性,而一种方法比另一种方法所具有的优越性在年幼儿童身上尤为明显。

大小恒常性、颜色恒常性和形状恒常性的年龄曲线的相似性证明,在由维也纳学派发现的节奏中,分离的场部分变得越来越彼此独立。然而,由于任何一种恒常性据推测在分离的物体和整个场之间存在动态交流,因此,恒常性本身应当在有利的条件下一开始便出现,这是因为进展并不存在于场部分相互依赖程度的创造或增加之中,而是存在于这种相互依赖程度的减少之中。

白色和颜色的恒常性

现在是讨论最后一个恒常性问题的时候了,它就是颜色和明度恒常性。正如我们已经见到的那样,所有的恒常性问题都具有相似性,这种相似性吸引了一些研究者,其中著名的要算索利斯和维也纳学派了。但是,相似性尽管有点相关,仍不至于蒙蔽我们的眼睛,以至于看不到每一种恒常性的特征。我们发现,甚至大小恒常性和形状恒常性在使之产生的动力因素中也彼此不同。而且,我们将在颜色恒常性和明度恒常性领域找到全新的因素。事实上,狭义上讲,我们不会发现明度恒常性和颜色恒常性是完全一致的。

明度恒常性和颜色恒常性要比任何其他恒常性得到更为广泛的研究。尽管直到1911年才刊布有关该领域的 不同的组成成分:白色和明度

此外,正如我们已经提到过的那样,靠近窗子的具有一定白色的色轮与阴暗处具有同样表面白色的色轮看上去不会恰好相像。这种情况再次与其他两种恒常性相似。一个旋转的圆,即便看上去还是一个圆,但是与正面平行的圆不完全相似,因为它表现出像一个绕着一根轴转动的一个圆;同样的道理,具有一定尺寸的距离为a的一根拐杖看上去与具有同样尺寸但距离为b的拐杖不会恰好相像;这两根拐杖,尽管大小相等,但由于距离不等而看上去不同。那么,在有关白色方面表现相等的两种所色将在哪种特定的条件下表现出不同呢?用其他两种恒常性进行的类推表明,这样的一个方面必定会出现。卡兹在很久以前从事的实验证实了这个结论。事实上,存在着不止一个方面的差别,首先与索利斯的研究相一致的那个方面,我将称之为“明度”,而卡兹则称之为照度(illumination);其次,是卡兹称之为“清晰性”(Ausgepragtheit)的东西。我们暂不考虑后者,而仅仅限于明度和白色的讨论,这是一个与索利斯相一致的术语,我们把它用于这样一个方面,即或多或少属于一个物体的永久性特性,像“白色”、“淡灰”、“黑色”一样。为了一致起见,我们必须谈论“白色恒常性”,以代替“明度恒常性”那个传统的术语。

白色恒常性的不变因素

运用这个术语,我们可以从标准实验中得出另外一种结果。如果我们把色轮放在窗子附近,以便使之减光等于在房间背面的那张纸,也就是说,当我们处理与同样数量的光i相一致的r值和p值时,尽管它也与不同的L-I结合相一致,而色轮看上去要比纸张更少白色,但与此同时却明亮得多。这就暗示着这样一种可能性,一种白色和明度的结合(很可能是两者的产物),对于在一组明确的完整条件下的特定部位刺激来说,是一个不变因素。如果两个相等的邻近刺激产生了不同白色的两个面,那么,这两个面也将会有不同的明度,较白的那个面不太亮,较黑的那个面会更亮。

白色恒常性的理论尝试

那么,白色和明度是如何产生的呢?这是一种视觉理论必须回答的问题。为了找到一种可能的解答,让我们先从白色恒常性与大小恒常性和形状恒常性的比较开始。然而,由于后面两种恒常性同我意欲说明的论点很相似,因此,为了简明起见,我将限于大小恒常性方面。我们可以说:两个相等的邻近刺激(大小,光线强度)可以引起两种不同的知觉物体(大的一小的,白色-黑色)。

与大小和形状进行比较的白色特性

然而,使这种情况得以发生的条件在两个场内并不一致。大小场内的结果要求产生距离的差异,一般说来,这些差异无法通过大小之间的差异或梯度(gradient)而产生。正如视错觉所证明的那样,人们可以使两根相等的线看上去不同,办法是用其他的线将这两根相同的线包围起来,如图76所示,但是,当我们将此与白色场中的类比效果进行比较时,这种效果相对来说是较小的。这是因为,在这里,确有可能把一个局部刺激的效果从黑色变为白色,只须改变视网膜上的强度梯度便可。让我们提供一个取自海林的例子(1920年):晚上,当我们的房间被灯光所照明时,窗子看上去是黑色的;但是,一俟我们把灯光熄灭以后——从而甚至减弱了来自窗格玻璃的光——窗子看上去反而相当的亮。用海林的空洞法(hole method)可以显示同样效应。将一块白色屏幕(上面有一个洞)置于充分照明的白色墙壁面前。起先,屏幕完全是暗的,接着那个洞便显出明亮的白色;随即屏幕被强光照明,结果那个洞转为黑色。同样的局部辐射,来自白色墙壁而穿过空洞,由此产生的白色或黑色视其与其余辐射的关系而定。当它处于梯度的顶端时,呈现白色,而当它处于梯度的底部时,便呈现黑色;条件的变化完全受制于辐射的强度。这里描述的现象被海林引证为对比的例子。但是,由于他的对比理论(contrast theoory)不得不被放弃,正如我们先前表明过的那样,所以“对比”这个术语不过是我们喜欢回避的一个名词,因为它不是根据梯度来意指它的解释,而是按照绝对光量来意指它的解释(见 我们的白色恒常性理论将以这种颜色特征为基础,它仅仅是一般规律的一个突出例子而已。在如此众多的文章中,我们找到了证明这一规律的依据,即知觉的特性有赖于刺激的梯度。

关于该理论的其他两个基本事实

在我们勾勒一种理论之前必须再补充两个众所周知的事实。 某种实验证据

关于迄今为止阐释的这个假设,能说它不仅仅是一种推测吗?有否直接的实验去证实它?当我最初考虑水平转移和非彩色水平两个原理时,下面的论点就闪现在我的脑海里。假设一个反射非彩色光的场呈现蓝色,因为环境场反射黄光而呈现非彩色,那么,客观上非彩色的场应当不再呈现蓝色,如果环境场呈现黄色的话。与此同时,如果它在客观上变得更黄,那么原先显示蓝色的场的非彩色化将证明,它的蓝色不是由于传统意义上的对比,因为环境场的对比应当增加,如果环境场的颜色浓度增加的话。这种论点导致一个十分简单的实验。在一间由漫射日光照明的房间里,我旋亮一盏普通的电灯,它将一个固定物体的阴影投在一张白纸上。该阴影产生一个区域,它在一个较大区域内反射非彩色光,而较大区域是反射黄光的(黄光由漫射日光和灯光所组成)。如果恰当地调节漫射日光的强度与灯光的强度,那么,白纸就呈现白色,而阴影则是浓浓的蓝色。这不是别的什么东西,不过是产生彩色阴影的众所周知的方法而已,也即一种经常由“对比”来进行解释的结果,尽管这种解释忽略了这样一个事实,即非阴影区虽然反射黄光,却看起来是白色的。现在,我对实验进行修改,使环境场客观上变得更黄,而主观上则呈现黄色:我用一张相对来说低浓度颜色的黄纸盖在一张白纸上,白纸上投有蓝色阴影,仅让阴影部分不被盖住。于是,我使环境场比先前反射更多的黄光,但是让阴影区保持不变。结果,围着阴影的纸看上去呈黄色,而阴影部分则丧失了它的大部分或全部蓝色。如果我使用一张颜色浓度更高的黄纸,那么结果还要明显。当然,我改变条件,以便排除一些可能的解释,除了黄色以外,我还用了其他一些照明色。结果仍然一样(参见我的文章,1932年a,p.340)。在原来条件下阴影呈现蓝色,而在实验修改以后阴影变为非彩色,这一事实证明闭合区域的外观并不依赖它自己的辐射以及环境场的辐射,这是对比理论所坚持主张的。也就是说,闭合区域的外观有赖于以累积方式结合起来的两个因素,有赖于已闭合的辐射和正在闭合的辐射之间的一个梯度,有赖于后者得以出现的颜色。当它客观上被着色时,它就呈现非彩色,而一个非彩色的内部场一定会以补色出现;然而,当它呈现彩色时,内部场就会或多或少地出现非彩色。

上面描述的一些实验倾向于使对比和“转化”之间的关系问题变得十分紧迫。很自然,这个问题使得该领域中的所有研究人员,从卡兹到卡多斯,忙于此项工作,而且将两种结果彼此分离的那些理论则与另外一些理论发生冲突,后者试图通过对比来解释转化(这是前面提到过的,业已证明是失败的一种尝试),或者通过转化去解释对比(如杨施等人)。我把这个问题暂时搁置起来,因为目前尚缺乏一些关键实验。然而,我无法相信这两种现象在其动力学方面是完全不同的。正如我确信的那样,如果所谓的对比效果还有赖于受刺激区域之间的梯度的话,而且,正如威特海默-本纳利实验已经表明的那样,如果所有这些梯度并不具有相等的影响,而是按照“附属条件”来施加它们影响的话,那么,这些对比效果一定是与“恒常性”效果密切相关的。让我们再次回到纯粹白色和明度的领域中来:我们看到,出现在同一平面中的两个区域将主要根据它们的白色程度彼此确定下来,而在不同平面中组织的区域也将相互确定它们的明度。relief)的因素,它们使图形属于背景的平面。在我们的例子中,双重呈现指的是,半圆被看作单一的图形。由此可见,它具有一种以一致的颜色呈现的倾向(参见 上述解释的有效性已由格兰斯·海德(Grace Heider)在一系列实验中予以检测。根据这种假设,非彩色刺激区域实际上由黄光和蓝光的混合所产生的这个事实丝毫不起作用。一切事实随双重呈现而发生,并且正面看上走是蓝色的。于是,便引入了下述的实验修改方式(见图79)。图形的下面部分绘上红色,与此同时,节光器的半圆内部是绿色,颜色和节光器开口是这样安排的,即通过减光屏,底部的红绿混合色看上去恰恰像顶部的黄蓝混合色。刺激条件的这种修改对于观察者的知觉不会产生任何影响,而且有了如下的确实发现:节光器看上去呈蓝色,图形呈黄色,颜色遍布它们的表面;在每一个区域内,刺激的差异在知觉组织中完全丧失了。同样的结果也可以在下列情形中获得,当较小的(绿色的)节光器和图形的下部(红色)被一个具有黑色和白色部分的色轮取代时,该黑色和白色部分像远离中心的蓝黄混合色那样呈现同样的非彩色。由此可见,这些实验证实了我们的假设,同时指明了为什么一方面透明度通常由颜色恒常性相伴随,另一方面这种联结又不是组织的,原因在于,透明度也可能导向恒常性的反面。

透明度中空间和颜色的相互作用:图多尔-哈特实验

当我们引入这个课题时,我们已经强调过,透明度本身是一个空间组织因素,而且需要某些图形条件加以完成(见边码p.181)。图多尔-哈特(Tudor-Hart)通过特定的实验表明,在透明度的空间组织中,颜色和形状有着密切的相互作用。她改变了颜色和光线的决定因素,让图形因素保持原封不动。她在透明的表面和通过透明表面而看到的那个面之间找到了一种密切的相互依存关系。对于她的各种结果,我仅提及其中一些如下:

(1)“当一台节光器(上面描述的节光器方法是用来产生透明度的)在相似的颜色和明度的背景前面旋转时,不论背景上有没有图形,节光器是看不见的。”

(2)“如果一台节光器在不同明度的背景前旋转,背景上有一图形与节光器在明度上相等,则节光器在中央区域看得见,甚至在图形前面也看得见。”

(3)“在其他条件相等时,节光器越暗,它便越透明”(p.277)。

(4)在其他条件相等时,背景越亮,节光器便越加透明。

(5)在节光器具有低透明度时,透明度便不一致,比起边缘区来,背景上图形前面的透明度更强。

(6)透明度在不同方面发生变化,视不同的条件而定。图形的鲜明性有赖于背景和背景上的图形之间明度的差异,这种鲜明性决定了图形的清楚或“模糊”,而背景的明度则决定了节光器的‘素质”,如果它越厚,就越坚实,背景也就越暗。如果有两台相等的节光器,一台在黑色背景前,另一台在白色背景前,那么它们“在各方面均表现得如此不同,以至于说它们客观上相同似乎有点滑稽可笑”(p.288)。

我毋须详细分析这些结果,我将指出,上述引用的图多尔-哈特的一些实验结果证实了刺激梯度的重要性,虽然它们是就空间组织而言的,但现在却对我们的透明度理论作了补充。它们补充了“裂半”的新情形,而所谓“裂半”,就是一种非彩色分裂成两种相等的非彩色(在上述结果2中,灰色区与图形和反射同一辐射的节光器的混合相一致,该灰色区在双重呈现中作为透明的节光器部分而被看到,并作为同样明度的图形而被看到)。我还将指出,它们表明了白色和黑色之间的硬性差异。

打赏
回详情
上一章
下一章
目录
目录( 16
APP
手机阅读
扫码在手机端阅读
下载APP随时随地看
夜间
日间
设置
设置
阅读背景
正文字体
雅黑
宋体
楷书
字体大小
16
月票
打赏
已收藏
收藏
顶部
该章节是收费章节,需购买后方可阅读
我的账户:0金币
购买本章
免费
0金币
立即开通VIP免费看>
立即购买>
用礼物支持大大
  • 爱心猫粮
    1金币
  • 南瓜喵
    10金币
  • 喵喵玩具
    50金币
  • 喵喵毛线
    88金币
  • 喵喵项圈
    100金币
  • 喵喵手纸
    200金币
  • 喵喵跑车
    520金币
  • 喵喵别墅
    1314金币
投月票
  • 月票x1
  • 月票x2
  • 月票x3
  • 月票x5