行为世界的组织和特性。静止过程的一般特征。简洁律。最简单的条件:完全同质的刺激分布。空间组织的某些基本原理。异质刺激:在其他同质场中唯一异质的简单例子——涉及这一例子的两个问题:(1)单位形成;(2)形状问题。作为刺激的点和线:(1)点;(2)线——闭合因素;良好形状的因素;良好的连续;线条图样的三维组织;空间知觉理论的结果:先天论和经验主义;三维空间的组织理论。刺激、线和点的非连续异质:接近性;接近性和等同性;闭合。其他一些异质刺激。组织和简洁律:最小和最大的单一性。来自数量、顺序和意义等观点的组织。
行为世界的组织和特性
事物的外表由场的组织(field organization)所决定,接近刺激(proximal stimulus)的分布引起了这种场的组织。于是,我们必须把我们的研究用于这种场的组织中去。那么,何种组织对单位形成(unit formation)负责呢?为什么行为空间(behaviouralspace)是三维的呢?组织是如何产生颜色或大小恒常性的呢?这些都是我们必须处理的问题。历史上,这些问题均以随机的顺序得到过研究,每一位实验者选择一个场,在这个场里他碰巧看到一个实际的问题以及解决该问题的一种方法。毋须赘言,我们对许多这样的问题尚无答案,而且,对任何一个问题均无完整的答案。但是,我们现在拥有充分的实验证据,以便为我们的评说提供系统化的程序。我们将以这样一种方式选择我们的材料,它可以使相互依存的主要问题清楚地显示出来。
静止过程的一般特征
倘若我们的起点更为一般化,则这样一种系统的尝试就会取得更好的成功。因此,在谈论任何一种实验证据以前,我们将问一个问题,即我们是否知道属于一切组织的任何一种组织特性。由于心理的组织是我们的问题,因此我们无法从心理事实中取得我们的答案,可以这样说,心理组织是我们方程式中的未知数。这就意味着,我们必须转向物理学。那么,物理组织,即过程的自发分布,是否显示了我们正在寻找的一般特征呢?
最大和最小的特性
当我们转向静止分布(stationary distributions)时,也就是说,时间上的不再变化,我们确实找到了这些特征。静止过程具有某些最大一最小特性(maximum-minimun properties),也就是说,这些过程的一个已知参数(parameter)不仅具有大小,而且具有最大或最小的可能性。我们只需举出几个例子便可使这一点明晰起来:如果我们在同一节电池的两极之间建立起若干电路,那末电流便将自行分布,以便在该系统中产生最小的能量。让我们来举一个只有两部分电路的简单例子。基尔霍夫定律(kirchhoff’ sw)表明了 I1/I2= R2/R1,在这一方程式中,I1和I2代表两部分电流的强度(intensities),而R1和R2则代表部分电路中相应的电阻。现在,从数学角度很容易说明,这些电流(即在电阻为R1的电路内电流I1和电阻为R2的电路内电流I2)将产生较少的热量,也就是说,比起电流I1为更大或更小的情况来,比起电流I2为更大或更小的情况来,将产生较少的热量,这是相对于基尔霍夫定律的要求而言的[两种强度之和必须保持不变,因为电路的电流强度仅仅依赖它的电动势(electromotive force)及其全部电阻]。
另外一个例子是肥皂泡。为什么肥皂泡的形状呈球形呢?在所有固体中,球体的表面积对于特定的体积来说是最小的,或者说,球体的体积对于特定的表面积来说是最大的。因此,肥皂泡解决了一个最大一最小的问题,我们也不难理解个中的原因了。肥皂粒子相互吸引,它们倾向于占据尽可能少的空间,但是,内部的空气压力迫使这些肥皂粒子停留在外面,从而形成这一空气容积的表面膜。它们必须尽可能地形成厚的表面层,如果表面越小,它的厚度就越大,这是以质量的量(amount of mass)保持不变为前提的。与此同时,膜的势能将尽可能小。
最大量和最小量当然是与占优势的条件相关联的;绝对的最大量是无限的,而最小量则等于零。在我们的上述例子中,所谓条件就是指质量的量,也就是说,肥皂溶液的量和空气容积。在 只要过程得以发生的条件是简单的,则这一主张的措词便是十分清楚的了。但是,当过程得以发生的条件变得不怎么简单时,将会发生什么情况呢?一个非常具有启发性的例子是水滴。当水滴悬于具有同样密度的媒体(medium)中时,它们将是完美的球体;借助固体的支持,球状稍微扁平;当水滴穿过空气时,它们又表现出一种新的形状,尽管这种形状比球状更不简单,却仍然是完全对称的,并满足以下的条件,即水滴的形状使它穿越空气时受到的阻力最小,这样一来,它便可以下落得尽可能地快;换言之,下降的水滴完全是流线型的(streamlined);它的对称性再次与最大-最小原理相一致。我们在这个例子中看到了一种静止状态如何随着越来越复杂的条件而变得越来越不简单,平衡(equilibrium)状态便是在这些条件下建立起来的。所以,当媒体处于复杂状态时,当媒体以一种复杂的方式使其特性逐点发生变化时,随之而产生的静止分布在某种意义上说便不再是有规律的或对称的,我们就不再拥有概念去描述这类分布的质化方面。概念将不得不是这样的,即普通的对称性将成为特例,只在特别简单的条件下实现。
尽管我们收获不大,但是我们已经获得了一些东西。我们至少能够选择在简单条件下发生的心理组织,并预言它们具有规律性、对称性和单一性(simplicity)。这一结论是以“心物同型论”(isomorphism)的原理为基础的,根据这一原理,生理过程的特征也就是与之相应的意识过程的特征。
此外,我们必须记住,始终存在着两种可能性,它们与最小量和最大量相一致;从而发生非多即少的情况。因此,根据这两种可能性,我们的术语——单一性或规律性将具有不同含义。最小事件的单一性将与最大事件的单一性有所区别。至于这两种可能性中哪一种可能性会在每一种具体情形里实现,则依赖于该过程的一般条件。
简洁律
我们已经得到了一个一般的原理,尽管公认为是有点含糊的原理,但它指导着我们对心物组织(psychophysical organization)进行研究。在我们的研究过程中,我们将使这一原理变得更加具体;我们将习得关于单一性和规律性本身的更多的东西。该原理是由威特海默(Wertheimer)引入的,他称这一原理为简洁律w of Pragnanz)。它可以简要地阐述如下:心理组织将总是如占优势的条件所允许的那样“良好”(good)。在这一定义中,“良好”这个术语未被界定。它包括下列特性,例如规律性、对称性、单一性,以及我们在讨论过程中将会遇到的其他一些特性。
最简单的条件:完全同质的刺激分布
现在,让我们从研究具体的心理组织开始!我们从一个最简单的例子开始我们的阐释,这个例子仅仅在最近才引起心理学家的注意。只有当力的分布在感官表面上绝对同质(homoge-neous)时,这个最简单的例子才得以实现。
为什么这是一个最简单的条件:不同的传统观点
为什么事物像看上去的那样?这个问题我们在前一章已经讨论过了。为了把这一例子看作是最简单的例子(尽管它看来是理所当然的),我们需要在回答问题时作出剧烈的改变。只要人们期望对我们问题的答案来自局部刺激(local stimtion)结果的调查,那么,另一情形看来便是最简单的了,也就是说,在该情形中,视网膜只有一点受到刺激。实验证据(该证据我们将在后面进行讨论)表明这种假设是错误的。同样的结论直接来自我们的 白色和坚持
如果使用全部同质的刺激,那末就不可能发生任何恒常性,这个否定陈述涉及下面的肯定主张,即一切恒常性预示了刺激的异质性,并为我们提供了解释恒常性的rtion)。当我们引入自我时,我们将讨论与坚持类似的特征,但是,有意义的是,如果我们不是被迫地去提及自我的话,我们甚至无法开始关于环境场的讨论。环境场的特征是一个自我的场,这种自我直接受该场的影响。
同质刺激强度的效应
然而,我们必须回到自己的问题上来,即雾的外表和刺激强度的关系问题。由于我们的知识仍然很不完整,因此,我们可以不考虑适应性在这种关系上的效应,这里的所谓适应性,是指一般意义上的暗适应和光适应(dark and light adaptation)。我们可以根据梅茨格在绝对同质刺激条件下取得的结果而得出结论,坚持随强度而变化大于坚持随白色而变化。梅茨格提供了有关场中事件(从绝对的黑暗开始,逐渐明亮起来)的描述。“起初,对观察者来说,它是在沉闷减少的意义上亮起来的,而不是在黑暗减少的意义上亮起来的,观察者感到一种压力的消失,他似乎可以再次自由自在地呼吸了;有些人同时看到了空间的明显扩展。只有到了那时,它才会在黑暗减少的意义上迅速地亮起来,与此同时,充斥空间的色彩也降低了”(p.16)。由于他无法在较高的强度上产生完全同质的刺激分布,因此,我们无法确定被见到的迷雾空间的深度对刺激强度的依赖性,但是,我们看到了刺激的开始,也看到了刺激的 (6)同质空间的不稳定性
同质的空间,甚至空间中很大的同质部分,并不像十分清晰的空间那样稳定。人人都知道,当他处在一间完全黑暗的房间里时,他的眼前会飞舞着光点和光纹。类似的现象也会发生在同质的光照空间中,尽管不是自发发生的;然而,当观察者开始审视其视野,以便检验其是否真的是同质时,他可能会看见光点或云雾状的结构从其视野中飘过。产生这些现象的力导源于神经系统内部,但是,在清晰度良好的正常条件下,整个组织如此稳定,以致于这些力难以产生,即使产生的话,也不能影响牢固建立的结构。
刺激的时间异质性
在我们离开异质刺激条件下组织的讨论之前,我们必须排除一种限制,它迄今为止限制了我们的论点。刺激的同质性被理解为空间的同质性。我们只有在空间上的同质刺激持续时,才会关心时间段(period of time)的问题。但是,每一个这样的时间段都有在此之前的时间段和在此之后的时间段,因此,我们筛选出来的时间段必须被认为也处于过去时间和将来时间的承上启下的关系之中。换言之,我们既把我们的同质概念用于空间,也把我们的同质概念用于时间,然后,我们便可以看到,空间上同质刺激的突然开始在时间的刺激分布中引入了异质性;因此,有机体必须有新的作为,而这种新的组织在某些方面依赖先前的组织。我们可以这样认为,完善的同质性将既是时间的又是空间的。如果全部刺激(而不仅仅是视觉刺激)完全是同质的话,那么就根本不会有任何知觉组织,这样的说法是否太大胆了一点呢?当我们身处黑暗并闭上眼睛时,将会发生什么情况呢?起初,我们看到深灰色的空间,几乎并不拓展开去,但是过了一会儿,我们便什么也看不到了。也就是说,视觉世界暂时停止存在了。我不能肯定,当我们身处不完全黑暗但完全同质的空间中时,是否会产生同样的结果。
彩色的同质空间
然而,不是因为这种思辨才使我引入这个题目的,而是为了排除我们先前讨论中的一个限制。我们把我们的问题限于中性光的情形。现在,让我们来排除这种限制。在类似梅茨格的实验装置中,当那种投射到墙上的光通过彩色过滤器时,我们将会看到什么东西呢?由于这种实验尚未做过,因此我们并不知道。但是,也有可能作一下无把握的推测。为了简便的缘故,我们假设观察者在实验开始以前发现他本人处于一个正常照明的房间内。接着,同质的彩色照明闯了进来,进入到一个“正常的”空间之中,按照正常的中性原理,将会看到与各自的过滤器颜色相一致的色彩。但是,如果观察者在这个同质的彩色场中逗留的时间十分长久的话,该彩色场会不会看上去继续呈现彩色呢?很可能不会这样;按照我的期盼,它将逐渐变为中性的。为什么我期盼它会有这样的变化,如果真的发生了,其结果意味着什么,这些问题将在后面讨论(见 我的假设并没有走得如此之远,以致于声称同质彩色刺激的结果是与同质中性刺激的结果完全一致的。相反,我期望这种结果在物体一自我(object-Ego)的关系中是不同的,这种物体-自我关系在前面曾有所提及。因此,我期盼被试会以不同的心境对同质的红色场和同质的紫色场有所感觉,即便两者均显现为灰色的雾。目前只需指出下述观点便够了,即颜色在其一切方面可能显现为整个组织的一个侧面。
行为空间不是纯视觉的
现在,让我们阐释最后一点,以便排除一种误解。倘若认为,在梅茨格的实验中,看到的空间仅仅有赖于视觉刺激的话,那末这样的假设将是错误的。行为空间(behavioural space)是一种更为综合的组织,它除了受视觉之力的支持以外,还受其他的力所支持,值得注意的是,受我们内耳前庭器官中产生的力所支持,还受所谓的深度感觉中产生的力所支持。当然,我们关于行为空间是一种更为综合的组织的说法,不仅对于梅茨格的实验(即由同质的视网膜刺激所产生的空间)来说是站得住脚的,而且对于其他各种视觉空间也是适用的。就功能而言,空间决非纯视觉的。
对我们的首次实验进行选择是十分容易的,因为刺激的“最简单的”例子可以从对我们问题的界定中推断出来。我们的下一步骤不得不更加武断了。当然,我们可以遵循首次实验为我们提供的方向走下去。我们发现,在不同距离进入各个面的空间构造需要特殊的力,同时,我们也进一步发现,如果这些力仅由另外的同质刺激的微观结构所引起,那么,我们将看到一个构成我们视觉空间之世界的同质的垂直平面。
由微观结构的同质刺激所产生的平面定位
现在,我们可以提出的 但是,让我们回到我们的问题上来。我们的问题是,在哪种距离上将出现同质平面。即便看到的距离不完全是恒定的,而且在较高的刺激强度下,看到的距离会比实际距离更大些,但是,它毕竟是有限度的。在梅茨格的实验中,眼睛和墙壁最近点之间的距离大约为1.25米。估计的最大距离不会大于该距离的2倍。因此,平面出现的距离范围,如果不是距离本身的话,也是可以充分地加以确定的。那末,它是否有赖于实际距离呢?遗憾的是,我们并不知道,因为在梅茨格的实验中这一点是保持恒定的。于是,存在着这样一种可能性,即行为距离也许有赖于实际距离。当然,实际距离无法直接地影响行为距离。两者之间肯定介入了某种东西。有三种因素可以扮演这种中介角色。 由于同质墙壁的外表距离将有赖于其实际距离,所以它必须通过调节和聚合的媒介才可以做到这一点。尽管已经进行了许多实验,以确定这两个因素在一个清晰的空间中对物体定位(localization)的影响,但是,根据这些例子为我们的同质平面作出推论仍然是危险的,即便这些实验的结果是单义的(univo-cal)。实际上,进行这样的推论也是不可能的,因为从这些实验中得出的结果是相当矛盾的。我们关于这两个因素的作用尚无确切的知识。但是,我们可以说:假定我们的平面的外表距离有赖于该平面的实际距离,从而也有赖于调节作用和聚合作用的话,那么这种依赖将是一种直接的依赖,而非一种间接的依赖。然而,早期的研究者们却持相反的意见;他们认为,调节和聚合能够影响知觉的数据,只要它们产生它们自己的分离感觉,这些分离感觉以这种或那种方式干预视觉,或者与视觉相熔合。我们无法接受这种观点。一方面,我们并非正常地体验到这类感觉,另一方面,这一理论涉及一种心理化学(mental chemostty),这种东西在我们的体系里没有位置,因为我们的体系是以实际的科学概念为基础的。我们记得的那种直接影响是神经系统本身的状况,这种状况与一定程度的调节和聚合相一致。它需要能量去调节一个附近的物体,并聚合一个附近的物体,在某些限度之内,物体越近则能量越大。这一事实,或者具有类似性质的其他一些事实,可能直接影响空间的组织,正如我们已经看到的那样(请参见边码 p.119),这种空间组织本身是消耗能量的动力过程。嗣后,我们将会看到,这样一种影响(在其存在之处)并不是十分值得考虑的,因此,很可能产生这样的情况,同质平面的现象距离可能十分广泛地有赖于它的实际距离。
异质刺激:在其他同质场中唯一异质的简单例子
现在,我们必须转向非同质的刺激;一个可能的程度是举出一个简单的例子,在这个例子中,刺激沿一个方向或若干方向逐点发生变化。我们暂且把这个问题搁置一下,留待后面讨论,现在让我们讨论这种情形,即在视网膜上同质刺激分布的范围内,存在一个不同刺激的限定区域。遗憾的是,我们无法在没有限定的情况下处理这种情形。迄今为止,尚未进行过能使这些条件得到满足的实验,即不仅正在闭合(enclosing)的区域,而且已经闭合(enclosed)的区域,都是绝对地同质的。接着,便是由梅茨格进行的实验。墙壁以这样一种强度予以照明,以致于看上去像一只碗。在墙的中央,有一个小方块留着不被照明,由于观察者必须抬起他的双眼,所以,这个未被照明的区域像一个不规则四边形投射于观察者的视网膜上面。观察者在这只“碗”的表面看到了一个黑色的不规则四边形,该“碗”的表面处于这样的区域之内,在那里,显现的不规则四边形与倾斜的头部平行,也就是说,向垂直面倾斜。
在这种情况下,正在封闭的刺激具有一种微观结构,而已经封闭的刺激则是同质的。然而,后者并不引起充斥空间的雾的知觉;与之相一致的场的这个部分出现在同样的面中,如同与正在闭合的刺激相一致的场的那个部分一样。换言之,这个面由正在闭合的刺激的微观结构所构成,这也决定了小的同质的闭合区域的结果。
然而,尽管这种结果是有趣的,却并未满足我们关于在另外的同质刺激中一个非连续性(discontinuity)结果的好奇心。因为在这一情形中,面的产生并不由于非连续性,而是由于正在闭合的刺激的微观结构。我们仍需了解最小的非连续性,即使充斥雾的空间的主要影响遭到破坏的非连续性。
详细说明的条件:场作为一个平面而出现
由于这一问题尚未得到解答,因此,我们必须限定我们的原始问题。我们将考虑一些情形,在那些情形中,周围的场作为一个平面而出现,不论是由于微观结构,还是由于一般的场清晰度(field artiction),我们将把我们的兴趣集中在由闭合的非连续性在这个平面内产生的结果上面。因此,我们要修改我们关于同质的整个场的假设,以便指一种相对来说大的同质场,而且在其界线以内的某处包含着一种同质的非连续性。实践中,我们将使用一些平面,上面有一些作为距离刺激的点。让我们注视任何一种这样的点,例如,在一张白纸上溅上墨汁而形成的点。于是,我们看到了墨渍。在这个简单的例子中,看来并不包含任何问题。那里有墨渍,而我们也见到了它。但是,我们已经了解到,我们对point)上不会丧失其清晰度,或者仅仅丧失其清晰度的最模糊痕迹;在这个所谓“重合点”上,图像和背景具有同样的亮度(考夫卡、哈罗尔,Ⅱ)。
现在,刺激强度增加组织力的这种结果,可能改变我们以梅茨格实验为基础的结论。尽管在他的实验中,更高强度的结果主要是由于微观结构的有效性,这一点是毫无疑问的,但是我们必须考虑这种可能性,即它也有一个直接的结果,以致于一个很明亮的和完全同质的场看来要比一个较不明亮的场更不那么雾茫茫。此外,对盖尔布的两个病人来说,这些结果也解释了为什么在一个平面前面的颜色浓度与平面的白色作相反的变化。
(2)形状问题
在已经证明了单位形成和分离是一个动力过程(该过程预示了接近刺激中非连续性产生的力)以后,我们必须转向问题的 这些力的实验证明
我们已经发现了某些力,现在,我们将补充一些实验证据,以证明组织的物体或单位实际上与场的其余部分在动力上是有所区别的,每一种单位都有其特定的力的分布。我们的11岁孩子画的图。然而,图17需要我们略加评论。图中的原始图形并不是由单一的异质性产生的单一图形,也就是说不是一个斑点,而是一笔画成的图形。尽管我们将在后面讨论这些条件下发生的组织过程,但我们仍想在目前的讨论中分析一下这个例子和类似的例子(来自其他研究者的例子),这是因为,根据形状简化的观点,这些例子是与其他例子一致的。图17显示了一个原始图形和由两名不同的成人画的再现图形。
在格兰尼特的例子中,图形的简化如同林德曼的例子。林德曼还使用了另外一种方法,以便证明在短时展现的条件下简单形状所具有的更大的稳定性。林德曼的方法是以不同的时间间隔展示一个圆和一个椭圆的各个部分。在这些条件下,椭圆开始变形,譬如说,变成了橡树果实般的形状,然而,圆却一点也未受影响,或者,当展示时间的差异太大时,圆形被分解为两个部分。
最后,让我们回顾一下在前面描述过的哈特曼的实验。实验中,一个图形展现两次,两次之间有一个短的时间间隔,而且实验中测量到的整个展现时间正好使该图形呈现为一个整体,没有闪烁。业已发现,当所见的形状是两种可能形状中较简单的一种时,在两种不同形状中所见到的一种刺激模式更容易融合起来。根据我们目前的了解,并与我们先前的结论相一致,我们可以作出解释,即较简单的图形中的内部应力比较不简单的图形中的内部应力小,这种减弱了的内部应力促使两个过程融合成一个过程。
有关减弱强度的实验早在1900年就由亨普斯特德(Hemp-stead)在铁钦纳(Titchener)的实验室中完成了:把一些图形投放到一块适度照明的屏幕上,一个具有可变开口的节光器在幻灯机和屏幕之间转动。通过逐步增加节光器的开口,图形便变得越来越清晰。如果开口开到最小一档,便什么图形也看不见了;当图形首次开始呈现时,与刺激模式相比,它是明显变形的,变得更加简单,更加对称,具有圆角而非尖角,空隙闭合了,甚至连一般的形状所要求的线条在临时填补的刺激中也不复存在。沃尔法特(Wohlfahrt)曾经用过一些图形,开始时把这些图形的尺寸不断缩小,缩小到看不见的程度,然后再把图形逐渐放大,由此,沃尔法特发现了颇为相似的结果;他强调现象的不稳定性,这种现象的不稳定性好似图形的一种直接可观察的特性;它们看来充满了内力,这些内力在图形内部导致实际的颠簸和跳跃。
所有这些实验充分证实了我们的期望。如果外部的组织之力较弱,那末内部的组织之力便会十分强大,足以产生相当大的位错,结果导致更为稳定的形状。如果这些图形变得更加稳定的话,则这些力甚至可以产生新的物质过程;新的线条可能被增添上去,对此现象,我们将在稍后加以详细研究。
现在,让我们转向后象的实验。后象发生在刺激被移去以后,而且,在最简单的情形里,可用同质的面去取代后象。这种情况必须由力来加以解释,它们产生自神经系统中原始发生过程的结果。人们可能会想到可逆的化学反应过程,物质已被分解,分解后的产物现在却重新自行结合起来,通过可逆过程形成了原先的物质。无论如何,这些力完全存在于有机体内部,它们的地位不再受外部能量的影响,从而可以更加自由自在地重新安排自身。由歌德(Goethe)描述的一个古老的观察(人人皆可重复的观察)证实了这样的结论:一个正方形的后象将逐渐失去其尖角,并变得越来越圆。
H·罗斯希尔德(Rothschild)所开展的一些实验是更加有意义的,在这些实验中,一个后象本身的发生有赖于下列事实,即它是否构成一个良好的形状。他没有运用表面图形,而是利用轮廓图形。如果这些轮廓图形是简单的,那么它们便会产生很好的后象;事实上,后象是对原始图形的改进,原因在于所有细微的不规则性均会消失殆尽。另一方面,如果线条并未形成简单的形状,那么后象要么成为较好的形状,要么若干线条根本不会在后象中出现。 在我们目前的例子中,存在着一种打破表面一致性的力,如果这种力无法产生这种结果,那么失败肯定是由于其他一些更强的力,也就是使统一的区域变得一致的那些力引起的。后面的这些力在整个单一表面的同质着色中有它们的起源,在这个单一的表面中,点仅仅是异质的而已。围绕着这个点,同质过程以闭合的接近性(close proximity)而发生,并以邻近性(contigui-ty)遍及该面的其余部分。我们不久将会看到,相等过程的接近性产生了作为邻近性的同样一些力。因此,在我们的例子中,统一的力一定是很强的,而单一的异质性往往不会强大到在没有附加力量的情况下足以克服这些统一的力。
我们讨论的一个结论是,看到一个点不是一种原始的成就,而是一种高级的成就。只有在特别发达的系统中,这样一种轻微的异质性才能产生清晰性;在其他一些系统中,这样一种轻微的异质性将产生一种简单的同质场。
(2)线
现在,让我们来考虑一下线条。普通的线条,不论是直线还是曲线,都被视作是线而非区域。它们虽有形状,但是却缺乏内部和外部之间的差别,鉴于此,它们成为我们一般例子中的另一个特例。从几何学角度讲,我们画的每一根直线都是一个矩形;但是,从心理学上讲,并非如此。另一方面,形状是线的重要特征,对此断语,我们将在稍后用实验证据来证明。
闭合的轮廓图
然而,关于线的考虑引进了一个新观点。如果一根线形成了一个闭合的图形,或者几乎是闭合的图形,那么,我们在一个同质背景上便不再仅仅看到一条线,而是看到了由线围起来的面的图形。这个事实如此熟悉,遗憾的是它从未成为特殊研究的课题,这是就我了解的情况而言的。然而,一旦我们剥夺了它的熟悉性的话,它仍是一个令人吃惊的事实。因此,我们要求对下述的说法有一个有效的证明,即由轮廓包围起来的图形是一个与轮廓外面的场不同的实体,轮廓外面的场在其他一切方面产生了同样的刺激。我们拥有一些方法,这些方法有助于确立轮廓图形与其背景之间的差别,但是,这些方法尚未用于我们的问题。我们可以对一个小图形的阈限进行测量(这种小图形产生了我们原始图形的内部轮廓或外部轮廓),测量的方法是把这样的图形投射到有轮廓的面上去,并在幻灯和面之间安放一个节光器,就像亨普斯特德使用的那种实验装置一样(参见边码P143)。如果该小图形要求节光器上面的裂口开得大一些,以便使轮廓内部的东西比轮廓外部的东西更为可见的话,那么,我们便证明封闭区域比之它的环境具有更大的聚合性(cohesive-ness),这就使得在封闭区域上面产生一个新的图像更加困难。遗憾的是,从未做过这样的实验,尽管从两个相似的实验中我们的假设结果似乎是可以预见的。这两个相似的实验,一个是由盖尔布和格兰尼特做的,而另一个则是由格兰尼特做的。
轮廓图的动力原因
但是,当我们把这种差别视作实际的差别时,我们的主要问题便出现了。我们想知道这样一些原因,不仅是将轮廓从场的其余部分中分离出来的原因,与此同时,还想了解将封闭图形从其环境分离出来的原因。我们的非连续性原理肯定解释不了这一现象。这是因为,轮廓和画在轮廓上的那个面之间的非连续性,不论在向内的方向还是在向外的方向上都是一样的。根据我们的陈旧原理,我们只能解释为什么我们把线看作线,也就是说,看作与其余部分相分隔的一些单位,但是,当我们看到被一条线围起来的区域时,或者看到由一些线组成的图形时(它们与场的其余部分相分离,而且不是以同样的方式与轮廓相分离),我们所关心的便不是这种情况了。尽管刺激的非连续性仍然具有分离的效果,而且迄今为止与我们的定律相符,但是,这种分离是不对称的。那么,这种不对称的原因是什么?
闭合因素
遗憾的是,上述问题未被处理。如果仅仅声明一下这是一种疏忽,那就会在读者心中引起怀疑,怀疑我们的一般原理是否有效。因此,我们将设法指出几种因素,它们也许能对这种现象作出解释。我们提出的 经验论者的异议
我们认为,我们对组织因素的有效性所进行的实验证明是十分充分的,只要我们放弃主张一种旧理论的既得利益的话,这种旧理论要求对一切事实进行解释,可是却不对所有这些不同的组织力量作出解释。我在这里指的是经验主义理论,该理论也许会说:我们在个别的例子中见到这些图形,正如我们以前经常见到的图形那样;我们目前例子中的刺激条件与以前经常重复的例子中的刺激条件十分相似,以致于产生同样的结果。如果对同一种效应提出两种可供选择的理论,那末,必须权衡一下两种理论的相对优点,如果可能的话,还须通过严格的实验,方能在两者之间作出抉择,这是千真万确的。
现在,让我们来权衡一下经验主义理论关于知觉组织问题的主张。我们来看一下图28的三个系列图形。一位经验主义者也许会说:“我们在图a里面看到一个十边形,它的内部有两条线,我们之所以这样认为,是因为我们经常看到这样一种图形,而不是4个不规则的小图形;在图b里面,我们看到两个长方形,中间夹着一个六边形,我们之所以没把它视作一个十边形,是因为人们经常见到前者的图形;最后,在图C中,由于经常见到方块和长方形,而不是一个十边形,所以,现在便可将此看作方块和长方形了。”这种解释似乎有点道理。不过,在1923年,M.威特海默遇到了这样一种异议,它是由图29那样的图形来组织的,在图29里面,M.威特海默(M.Wertheimer)姓氏的两个首字母,即M和W隐藏在图形里面,苛勒也刊布了若干其他的图形(1925和1929年)。
对经验论的实验驳斥
戈特沙尔特于1926年提供了更多的系统证明。在他的实验中,向被试们呈示5个简单的线条图样(即a图样),把这些简单的线条图样投射到一块屏幕上,每一个图样的投射时间为1秒钟,在两个图样的投射之间有3秒钟的时间间隔。然后,告知被试尽可能记住这些图像,以便在后来测试时仍能记得这些图像,并设法把它们画在纸上。在经过一定数量的呈示以后,便向两组被试呈示与 三维空间的组织理论
针对所有这些理论,我们的假设认为,三维形状在方式上与二维形状一样,也是组织问题,而且有赖于同样的定律。我们远未否定双目视差作为三维原因的重要性,但是,正如我们后面将要表明的那样,我们认为,原因在于组织之力,这些组织之力既可能与其他组织之力合作,也可能与之发生冲突。我在否定经验对深度产生的影响方面还应当格外小心。在我们了解经验意味着什么之前,经验的引入并不具有任何解释价值;只有当我们把经验作为组织本身的一个过程来加以理解时,它方才对我们目前的问题有所帮助。
组织之力和双目视差
此时此刻,我们的主要观点是,除了双目视差以外,还有其他一些三维组织的力量,这些力量可能比双目现差这一因素还要强大一些。对此有两个证据: 刺激、线和点的非连续异质
现在,我们将在我们的讨论中包括这样一些图样,它们不再是连续的线和点。这些东西将为我们提供两个组织原则的证明,这两个组织原则我们已经提到过,也就是接近性(Proximity)和闭合(closure)。为了便于充分讨论,读者应当转向威特海默的原文(1923年)和苛勒的文章(1925,1930年)。
接近性
接近性的因素是很容易证明的。在图41和图42的图形中,圆点和线条形成对子,在这些对子中,接近的圆点和线条自发地联合起来。确实,人们也可以任意地看其他的对子,尤其是当距离的差别不是太大时。但是,在同一时间内看到的对子不可能超过一个或二个,这样的对子越多,同时看到远距离的对子就越困难,而其他一些对子则随着对子间增加而获得了稳定性。此外,接近性是一个相对的术语,这是明白无误的;同样的距离,在一个图样中可能是对子内的距离,而在另一个图样中则可能成为对子间的距离。当然,这一定律也是有限制的;当距离太大时,便不会发生任何统一,对子内距离越小,对子便越稳定。
接近性和等同性
然而,若要系统地阐述接近性定律也不是一件易事。迄今为止,我们只不过证明了,当场包含了若干相等部分时,相等部分中具有更大接近性的一些部分将组织成较高的单位(对子)。这种组织必须被视作与一个同质点的组织同样真实的组织。正如我们用实际的力量对后者作出解释一样(这些实际的力量将一致的区域结合在一起,并将该区域与场的其余部分相分离),我们必须把我们的组群形式视作是由于组群成员之间吸引的实际力量。这不只是一种假设,也不只是一个名称,因为这些力具有可以证明的效果,正如我们以后将会看到的那样,当我们研究有机体对场内的这些力进行反应时,我们可以看到这些力具有可以证明的效果。
然而,我们的接近性定律迄今为止有赖于接近中的一些部分的等同性(equalty)。即便具有一定的限度,它仍是十分重要的。但是,我们将设法了解,我们能在超越这一限度多大的程度上对它进行概括。在图43a中,该原理仍对归并(grouping)起决定作用。我们看到的归并对子由一条蓝线和一条红线组成,而不是由两条蓝线和两条红线分别组成。
但是,在图43b中,该结果值得怀疑。因为图43b的图样是更加模棱两可的。我们可以看到接近部分的归并和相等部分的归并。前者(接近部分的归并)看来略占优势,至少,我可以在这些归并中相当容易地看到所有的线,可是在后者(相等部分的归并)中,我倾向于既丢掉了直线,又丢掉了曲线。因此,尽管接近性看来仍支配着等同性,但是,这种优势已经消失,这应归功于我们所引入的一种新差别,也就是说,形状对颜色。我们发现,形状的等同比起颜色的等同来是一个更强的组织因素。在图43c中,两种因素结合起来了,现在,等同性显然超过了接近性,那些对子由相等的线形成,而不是由接近的线形成。在这三种图形中,相对距离犹如1-3。对这些因素的相对强度进行测量是可能的,正如威特海默已经揭示的那样,通过改变这些相对的距离来对这些因素的相对强度进行测量是可能的。如果我们使它们都相等,我们便把等同因素孤立起来了。这种情况在图43的d和e里面都做到了,在这两幅图中,由于形状的差别,e比d更加稳定和更少模棱两可,而d仅仅在颜色上有差别。
这一讨论似乎要求对接近性定律和等同性定律作如下的系统阐述:场内的两个部分将按照它们的接近程度和等同程度彼此吸引。如果这种说法正确的话,如果接近性和等同性这两个因素中任何一个因素的值为零的话,那就不会发生吸引,从而也不会发生归并。对于接近性来说,这是容易证明的,因为接近的程度,或者它的对立面,也即距离,可以容易地予以量的改变。我们只要将两个场的部分彼此完全分离,吸引之力将会消失,至少就一切实践的目的而言,吸引之力将消失。可是,由于等同程度还不可能被测量,因此也不可能从实验角度去确定当两个场部分完全不同时是否会发生任何归并。然而,我们可以对后一种说法加以限定。分离的部分不会与背景归并在一起;所有的归并在背景上的图像之间发生。因此,在那个意义上说,也就是作为图像来说,如果归并出现,那么就一定存在等同性。这就为等同性这个术语提供了十分重要的判据。至少,迄今为止,等同性与接近性具有同样的立足点;在这个意义上说,没有等同性便没有归并,正像没有接近性便没有归并一样。
这一论争的目的在于声称,单凭接近性,或者说单凭任何一类事件之间的接近性,并不产生组织之力,力的产生和力的强度有赖于接近状态中的那些过程。上述句子的后一部分已经由我们的上述例证所证明:处于恒常接近条件下的组织有赖于等同性程度,有赖于组织中过程之间的差别。上述句子的前一部分(即单凭接近性不是充足条件)也是正确的,它可以导源于图形一背景(figure-ground)的清晰度。在下一章中,我们将用较大篇幅来讨论图形一背景的清晰度。如果单是接近性成为组织原因的话,我们便与我们在物理学中了解的组织知识发生矛盾。“无论何处,只要A和B在物理学中彼此相关,人们便会发现,其效果有赖于A和B彼此相关中的特性”(苛勒,1929年,p.180)。于是,两个物体按照它们的质量而相互吸引,而且,它们越是接近,则吸引力越大,但是,两个物体也可能在相互之间并不施加任何电力(electric forces)的情况下彼此接近,如果这两个物体在电学上是中性的话。因此,在我们的心物组织中,当两个异质部分由于接近性而形成一个对子时,它们一定在某个方面是等同的,从而能够彼此产生影响。
(实心=红色,影线=蓝色,参见边码p.165注10)
实际上,我们可以单单通过接近性而将任何一类部分结合在一个组群中,假定这些部分完全可以从其他部分中分离出来的话。我们的图44提供了一个例子。但是,这并不意味着,单凭接近性能将任何东西都集合在一起,而是这些部分具有作为部分的共同特性,这些共同特性解释了这些部分相互作用的原因。
让我们对接近性和等同性作最后的说明。在图43(a-e)中,可供选择的归并和使形状得以产生的接近性等同,而从任何一种归并中产生的整个图形又是有规则的和一致的。但是,当结果不是有规则的或简单的图形时,接近性和等同性又将如何运作,这个问题尚未进行过研究。像在许多其他方面一样,我们在这一方面的知识仍然不够完整。
闭合
让我们现在转向闭合(closure)。在前面的讨论中(见边码P.151),我们曾主张,闭合区比不闭合区更加稳定,从而也更容易产生。我们将通过与接近性因素和良好连续性因素相对的闭合组织来证明这一点。图45引自苛勒(1929年)的研究,它是关于闭合组织不考虑接近性因素的一个例证。从占支配的角度而言,并不是那些最接近的垂直线形成对子,而是那些闭合空间形成对子。尽管在图45中,闭合空间的内部距离(两根垂线之间的距离)为两根接近垂线之间距离的三倍,此外,两根短斜线的端间距离与两根接近垂线之间的距离正好相等。而且.在图46里面,也包含图46a的A、B、C、D四个部分。但是,在图a中,按照良好连续因素的原则,B是A的连续,D是C的连续,可是在图b中,两个闭合区都表现为次级整体(subwholes),以致于A不再由B连续,C也不再由D连续。闭合作用并不总是战胜良好的连续,这是由威特海默论文中的若干图像所说明的。关于这篇论文,我在这里省略了,不过,我想证明闭合原则的效用。
我从点子图中选取了一个例子,用以说明并非所有的闭合作用都同样地好,与此同时也证明了单位形成和形状是组织的两个不同方面。在图47所呈现的两个图形中,b是一个熟悉的图形,使人回忆起北斗七星的犁状星座,而前者看上去则完全是新的。这两个图形由赫兹(Hertz)以不同方式联结了七个点而构成。其中图b的联结方式是我们在天空中常见的星座,而图a的联结方式,尽管在某种意义上说是较为简单的,因为它产生了单一的闭合图形,然而没有人见过这种图形,原因是这个闭合图形十分不规则,而图b的闭合部分却十分简单。
其他一些异质刺激
我们将通过考虑一些不太人为的刺激条件来结束这场讨论。通常,既非完全同质的分布引发整个刺激模式,又非不同的同质区域构成了整个刺激模式。一般说来,位于刺激发生的跳跃之间的区域,其本身并不同质。关于这种异质性,我们考虑了两个特例。最简单的例子是那样一种异质性,在该异质之中,刺激在一个方面是恒定的,但是作为距离其他维度上一个特定点的线性函数而变化着,例如,一个分级圆盘,从中心到边缘一致地变得更淡或更浓。正如马赫(Mach)于1865年发现的那样,这些分布看上去一致,我们还必须补充一点,这些分布发生的区域,在我们的视野中产生一个充分界定的单位。实际上,两个特例必须加以区别;在 如果我们通过引入精细轮廓的方法把一致地变化着的刺激区域分成两个或两个以上的区域,那末,色彩的一致性便将在整个区域内消失,而且只保留在新形成的部分区域内,这些新形成的部分区域现在看来彼此不同,每一个部分区域均按其自身的平均刺激而不同(考夫卡,1923年a)。当刺激的变化不一致时,也可能发生同样情况;在该情况中,变化率(rate of change)逐点发生变化。在rings)证明,部位结果不是部位刺激的结果,而是有赖于刺激在大范围里面的分布,这一点已由马赫本人十分清楚地指出了(1865年,1885年)。我们只想在一个方面对马赫的理论作进一步阐述。马赫认为,这种结果纯粹是色觉,而且他的实验作为与赫尔姆霍兹(Helmholtz)的心理学理论相对立的生理对比理论(physiologi-cal theory of contrast)的最后一个证明,出现在许多早期的教科书中,可是现代的教科书则倾向于把它省略了。但是,圆环的出现(也就是说,一个区域内的新形状)是一个组织问题。这个问题是由M.R.哈罗尔(M.R.Harrower)和我本人根据这一观点提出的,而且,我们明确地阐述了这样的事实,即有利于特定形状组织的一些条件将会产生马赫环,而当一般情况不太有利于这种组织时,这些圆环将不会出现或者不太明显。我们已从利布曼(Liebmann)效应中了解到,亮度差异在产生分离方面要比仅仅产生色彩差异来得更加有力。因此,哈罗尔博士和我得出结论认为,如果马赫环是组织结果的话,那么单单色彩变化是不会产生马赫环的。索利斯(Thouless)已经开展了这样的实验,这些实验证实了上述的结论;在一组精心设计的实验中,我们证实了索利斯的发现,与此同时,确立了针对马赫环而设立的硬色和软色之间差别的效验。
组织和简洁律:最小和最大的单一性
现在,我们已经到达了我们讲座中的某个阶段。我们已经在若干不同的条件下对组织进行了研究,而有关这种组织的一些有效原则也已经建立起来。把我们的成就与本章的引言相比较是适当的,在该引言中我们系统阐述了我们研究的指导原则,也即简洁律w of pragnanz),它把产生的静态组织(stationary or-ganizations)与某些最大最小原理(maxim-minimum principles)联系起来了。实际上,该定律遍布于我们的整个讨论;我们已用各种形式遇见过这个定律,如统一(unity)、一致(uniformity)、良好的连续(good continuation)、简单的形状(simple shape)和闭合(closur)。但是,还遗留一点,它在开始时曾被提及过,但在后来的讨论中没有展开,那就是我们所谓最大事件和最小事件的单一性之间的差别。现在,我们必须根据这一观点来进行我们的讨论,并补充一些证据,以便为我们的区分提供更多的材料。
概略地说,最小限度的单一性将是一致的单一性,而最大限度的单一性则是理想的清晰度的单一性。在我们的例子中,两者均用图形表示; 我已经强调了能量和清晰度之间的这种联系(也许我所提供的证据相当不充分),这是因为,从理论上讲,这种联系是坚实的。让我们重复一下苛勒的一段话:“最后的不依赖于时间的分布包含了能够作功的最低限度的能量”(见边码,p.108)。这种情况尽管在一切情形里都是正确的,但在特定的情形里需要一个十分重要的系定理(corory)。假定我们正在考虑的系统变化由一个相对来说小的亚系统(subsystem)和一个大的蓄积库组成(从这个蓄积库中我们可以根据需要提取尽可能多的能量)。在我们将我们的观点用于这一情形时,我们必须把最后的能量变得最小的那个系统当作由亚系统和蓄积库组成的整个系统。我们发现,在这一过程中,小的亚系统从蓄积库中尽可能多地提取能量,以致于在这一过程之后,它自身的能量比它先前的能量更大。苛勒在1924年将这一原理用于有机体的成长及其不断增加的清晰度。看来,这也同样适用于我们目前的问题:如果特定的反应系统能够吸取许多能量的话,那么它就会这样做,从而获得清晰度,也就是说,获得最大程度的单一性;如果它的能量供应中断,或者仅仅局限于很小的范围之内,那么将产生最低程度的单一性。
来自数量顺序和意义等观点的组织
到目前为止尚未忘记本书纲要的读者(本书纲要在func-tion)中的特定价值,我们的科学正处在自然、生命和心理的交会点上。我们的讨论有没有对这种整合作出过贡献呢?我们已经从这三个会聚领域的科学中提取了三个指导性概念,它们是数量(quantity)、顺序(order)和意义(meaning)的概念。根据这三个术语,我们的讨论意味着什么?
数量
我认为,就数量而言,我们的讨论已经证明了这样一些推论,这些推论是当我们第一次研究量和质的关系时达到的。我们的简洁律具有量化的特征,该特征同时也是质的特征。作为最大和最小的原理,简洁律是定量的,而作为单一性原理,它又是定性的。显然,量和质的特征并非两个彼此独立的特征,而是同一原理的两个方面。在实际的实验中,质的方面领先;对于任何一种实际的组织来说,我们未能提供确切的量化公式。但是,作为实际的组织,单位和形状必须具有一个公式,该公式从数量上对单位和形状加以表述,正如物理格式塔也有它们的公式一样。我们的质的知识与这种量的知识只是在精确性程度上有所不同,而不是在种类上有所不同。
顺序
我们发现,有效的组织定律解释了我们的行为环境为什么是有序的,尽管刺激的空间复杂性和时间复杂性有点令人手足无措。单位正在形成,并保持着与其他单位的分离和相对的隔绝状态。请考虑一下,当你的双眼连续不断地东张西望时,视网膜的组成要素将会发生什么情况:如果双眼以迅速的相继方式注视物体,而且没有任何顺序,那么,视网膜的要素将时而受到白光的刺激,时而又受到绿光的刺激;一忽儿刺缴变强,一忽儿又变得很弱;伴随着绿色的是红色或蓝色,一种万花筒般的变化。与视网膜各点上刺激的忙碌景象相一致的是什么东西呢?一个完全稳定和井然有序的世界;当我的眼光扫视时,我的书桌上的香烟盒仍然是香烟盒,台历仍然是台历;我在我的行为环境中体验不到变化,尽管我在“我自身”内部体验到一种变化,感觉到我的双眼在静态的物体上移动。确实,我们对这种特殊的效应尚未作出过解释,但是,我们看到,如果没有我们的组织原则,物体便不成其为物体,因此,由这些刺激变化产生的现象变化将如同刺激本身的变化一样无序。于是,我们把顺序作为实际的特征而接受下来,可是,找们无需特殊的动因(agent)去产生顺序,因为顺序是组织的结果,而组织则是自然之力的结果。以此方式,我们的讨论表明了自然如何产生顺序。
意义
最后,我们的讨论为我们提供了一个理解“意义”(significance)的基础。良好的连续和良好的形状是有力的组织因素,而且,两者在实际的意义上都是“可以理解的”:一根线在其自身内部携带着自己的定律,一个有形的区域或容积也一样。由于外力的作用而违反这个定律被视作是一种违反;它们与我们的合适感(feeling of the fit)发生冲突,从而有损于我们的美感。我们在任何时刻看到的形状并没有通过将部位价值分配给每一个形状的空间要素而被恰当地描述,而是被视作一致的整体;它们像威特海默的天堂访问者听到天堂的音乐一样,而不像台子或音调的纯经验公式那样(这是威特海默的其他一些天堂探险家能够详加阐述的)。
我们的讨论处理了一些十分基本的物体,这些物体远离心理的各种表现形式,在这些表现形式中,“理解的”心理学家对它们发生兴趣。但是,即便是这些微不足道的物体,也揭示了我们的现实不只是基本事实的并置(collocation),而是由一些单位所组成,在这些单位中,没有一个部分是靠它自身而存在的,其中,每个部分都指向它自身以外的地方,从而意味着一个较大的整体。事实和意义不再是属于不同领域的两个概念,因为在内在地一致的整体之中,一个事实始终是一个事实。如果我们把问题的每一点分离出来,逐一予以解决,我们便无法解决任何问题。由此可见,我们确实看到了意义的问题如何与整体及其部分之间的关系问题如此紧密地相联结。我们曾经说过:整体大于它的部分之和。我们还可以更加确切地说,整体除了它的部分之和外,还有其他某种东西,因此,计算总和是一种毫无意义的方法,而部分-整体的关系却是有意义的。