看漫画 首页 名著 中国名著 外国名著 玄幻科幻 都市言情 历史军事 排行 免费
搜索
今日热搜
消息
历史

你暂时还没有看过的小说

「 去追一部小说 」
查看全部历史
收藏

同步收藏的小说,实时追更

你暂时还没有收藏过小说

「 去追一部小说 」
查看全部收藏

金币

0

月票

0

第八章 感受性的测量方法_心理物理学纲要

作者:费希纳 字数:10877 更新:2025-01-09 14:54:11

根据 没有区别简单与相对差别感受性的方法,因为在这两种情况下我们都必须确定引起特定感受差异的两种刺激量。在这个时候,我们要关注差异的绝对强度或者刺激的比率,以此来用两者之一的倒数测量感受性。每一种方法都具有自己的意义。不过现在,讨论获得前一种结果的方法就足够了。

在这些定义的基础上进行测量,也就是假设我们在各种条件下都能够切实准确地判断感受与感受差异的等价性,并且能够对它们进行陈述</a>,这些任务乍一看没有那么容易。然而正如我们之前提到过的,大家都知道利用光度计的测量方法是基于对感受等价性的判断,就音乐而言,一个人必须经常判断两个音调的一致性,以及两个音调间的差距是否相同,也就是音差。我们现在要以某些普遍的方法来证明感受差异的等价性。事实上,相对于绝对感受性的测量方法,关于差别感受性的测量方法迄今为止已有很大的进步了。因此我们要开始主要研究这些方法。

对于这里将要提到的这些方法,重点讨论对它们本质的一般理解以及它们之间的相互关系,并对保证它们准确性的共同必要条件进行介绍。我们关注的重点是它们在实验与计算中的应用,这在后面几章中将进行详述,并且对所获得的结果做出解释。然而如果我试图阐述在更周详的调查中必须考虑到的特殊实验与计算方法,或者我想为所有可用的规则提供理论基础和实验证据,我可能会破坏讨论的流畅性,干扰那些更关注方法的一般理解而非方法使用的人的兴趣。因此为了更详细地说明这些方法以及基于这些方法的实验系列,我更希望选取《心理物理学领域的测量方法与测定》(Massmethoden und Massbestimmungen im Gebiete der Psychophysik)这本书中的一些内容,并且简单引用一下《测量方法》(Massmethoden),以对目前的这项工作做一些补充。我在这里简单述及的很多内容都在那本书里有详细的论述。你也会发现那里有更精确的理论观点和明确的实验证明。

差别感受性的测量方法

概述

当前有三种测量差别感受性的方法,为了简洁起见,我分别称之为:

(1)最小可觉差法。

(2)正误法。

(3)平均差误法。

首先,我们检验这三种方法在同一项任务中的表现,特别是区别重量差异的准确性。我们希望以通过这种方式的介绍,引出对这些方法的初级表面的理解,尽管实际上到现在为止,人们只使用了前两种方法。

在使用最小可觉差法时,我们要通过提起两个容器A和B来比较它们的重量,这两个容器中水的重量有轻微的差异。如果重量的差异足够大,就能被感觉到,否则就不会。最小可觉差法的主要目的在于确定多大的重量差别才能刚好被感觉到。我们可以用这个差异量的倒数作为感受性水平的指标。

这种方法的一般操作如下,即将刺激从容易被觉察降低到刚刚可觉察的水平,以及再将刺激从不可觉察增加到刚刚可觉察,两者完成相同次数的操作,取平均值作为结果。

如果有人采用很小的重量差异进行多次重复实验,就会经常弄错差异的方向,即较轻的容器会被认为较重,反之亦然。然而如果重量增加得越多或者感受性越强,正确的次数就将大于错误次数或占总次数的比例会增大。正误法从本质上讲,它的目标在于确定在各种比较感受性的情况下,想得到相同的正确判断与错误判断比率,或者正确判断与总判断数比率时,所需要增加的重量。这些不同情况下感受性的程度用这个附加重量的倒数表示。

不确定的情况需要删除,但是应该半数计入正确判断,另外半数计入错误判断。

以给定容器的实际重量作为标准,被试可以只根据感觉判断来匹配与之相同的重量。一般来说,一个人在判断时会出现一定量的低估。当把一个与被试判定的重量相同的容器放到天平上时,就可以发现这个误差。重复进行这个实验可以得到许多误差数据,我们可以据此计算出一个平均差误。我们把通过这种方法得到的平均差误的倒数,作为重量的差别感受性。这就是平均差误法。

由于正误差与负误差在相同程度上源于缺乏正确的知觉,因此它们对我们的测量是同样有用的。也就是说它们不应相互抵消,而应该把它们的绝对值相加。

正如这些方法可以用于重量的感受方面,它们也可用于视听感受等,还可用于广延感受。例如用最小可觉差法测量广延感受性时,需要判断两支圆规的两脚间距的差异达到多少时,才能让被试刚好感受到差异,可以通过视觉或者放在皮肤上两种途径来判断。使用正误法判断两支圆规两脚间距的细微差异时,我们需要记录实验试次中正确与错误的次数。最后在平均差误法中,我们则要确定当一个人尝试匹配相等的两支圆规脚间距时所产生的平均误差。

这三种方法目的相同且相互补充。在 我们的方法依赖于确定正确判断次数与错误判断次数相对于总判断次数的比率,一般我倾向于使用后面这种比率[8]。我假定把正确判断的次数称为r,错误判断的次数称为f,总判断数为n,我们主要关注的比率就是r/n。然而,如果一套特定观察的结果被分成几个子群并且分别加以计算,r和n则分别指每一个子群的正确判断数和总判断数,而v则代表子群的数量,因此vn就变成一整套特定观察的总判断数了。当整个实验系列涉及几套这样必须互相比较的观察时(通常情况都是如此),那么vn就必须再乘以套数以得到整个系列的总数。

注意每个不确定判断应该被分成两半,一半归入正确判断,另一半归入错误判断。为了避免这样一来存在着很多半数,我把每项正确判断记为两次正确,每次错误判断记为两次错误,每次不确定判断记为一次正确一次错误,因为计算r/n只需要计数数据。

P指代标准重量,也就是用以比较的装载在容器里的重量,标准P中是没有D的,D代表一个实验试次中使用的重量增量(附加重量)。我们给h指定一个值,这个值与差别感受性直接成正比,因此与能够与给出相同r/n的D成反比例关系,简言之也就是我们所关心的差别感受性的测量值。

实现这种方法有两种程序方式。根据 因此可以用纯实验的方法呈现这个问题,这样任何人,即使没有理解操作规则的推理过程,甚至没有数学背景也能够使用这种方法来进行测量。他还能够满怀自信地加以使用,因为这种方法的数学推导已经得到了著名的数学家权威的认证,并且通过了经验的检验。

正误法计算的公式与数学推导

到目前为止还没有人提出当附加重量D保持恒定时,如何确定比值r/n怎样随着标准重量P的大小而变化的先验原理。这更应该属于需要通过实验加以确定的原则性问题。另一方面,我们需要根据概率论的原则,确定当标准重量P保持恒定而附加重量变化(差别感受性h保持不变)时,r/n将如何变化(假定有很大的n)的先验条件,或者如果影响重量增加感受的任一外部变量发生了变化时,通过D如何能够一劳永逸地预测所有变化。如果可以实现这些目标,同样的原理对于我们确定观察误差相对数量的变化也是适用的,其中观察误差的大小会变化,而观察精确度保持恒定。然而我们所关心的r/n与Dh的关系却不能用有限的表达式加以表示,而是必须表示为一个整体,出于实际操作的目的必须制成表格,制作表格过程如下所述。

从现在起用θ表示整式,它在这里的使用与表示相对数值或限定大小的误差概率一样。唯一不同在于重量增量的一半D/2被通常表示为Δ的误差项代替。我们写作

公式中,π是鲁道夫常数[12],e是自然对数的底数,t=hΔ=hD/2, h是高斯概念系统中精确度的量度。在很多地方,都有可以查到与给定θ值对应t值的表格,例如在1834年的《柏林天文年鉴》(Berlin astronom.Jahrb., pp.305 ff.)中,给到了t=2.0的范围值;在一份特殊的且已绝版的石印表格中,给到了t=3.0的范围值。因此,给定对应于r/n的θ,我们可以同时确定t或hD/2。

我们现在马上要开始证明下面这些等式,它们是我们方法的基础,通过这些公式可以由r/n得到θ。

因此

只需按照如下的要点来考虑r/n和θ的关系就足够了。我们通过等式(2r/n)-1=θ就能根据观察得到的r/n计算出θ值,在综合表中可以根据θ的积分值查找对应的t=hD/2的值,然后用这个值除以D/2来得到h。或者,如果我们将在正误法中取的h定为平均差误法中的一半(接下来我们就是这么做的),我们可以直接除以D。为了避免把每次观察得到的r/n值单独换算成(2r/n)-1,我把积分表中的θ进行了转换,转换后的表给出了θ=(2r/n)-1和t的关系,可以直接从r/n和t列查到。后续的基本表是用这种方法推导出来的。

我向莫比乌斯(A.F.M?bius)教授展示了r/n和θ关系的数学推导,并且通过了他的检验,因此可以认为是精确无异议的。他还帮我进行了更加简练和精确的推导,相比之下我的公式就有点拙劣了,不过最后得到的结果是一样的。因此下面我想再展示一下他的推导来取代我之前的推导。

莫比乌斯的推导使用了一条直线两个部分的偏离为例,而不是两个重量差异的例子。二者的原理是相同的。

一般把

作为测量误差落入-Δ和+Δ区间的概率,其中h和前面一样代表测量精确度,π是鲁道夫常数。

如现在给出

A  C  B

作为一条直线上的三个点,C接近于但不是正好处于A和B的中间。用正误法进行n次观察的过程中,我有a次判断A比B更加接近C,也就是CB>CA。我还判断n-a=b次B比A更接近C即CB<CA。CA<CB和CB<CA的可能性随着a和b相应地发生变化,两种可能性本身就是a/n和b/n。

如果我们用

A  C M  B

表示一条线,M是A和B之间真正的中点,C紧靠M在A的一边,那么我的判断就是正确了a次而错误了b次。换言之,我相信点C在M和B之间的次数为b。在b次的判断中,每次我都错误地判断了C的位置,我错误地认为在往B的方向上,线段CM相对于M而言,是靠近B的一边的。因此我每次在同一方向都犯了一个>CM的错误。错误的概率一方面可以用=b/n的方式表示,另一方面可以表示为

其中CM是正数。现在

因此

接下来可知

最后,因此有:

这两个a/n和b/n的表达式也可以这样解释:在对直线ACMB的n次观察中,只有A和B是确定的,一个人有a次相信M处于C和B之间(正确判断),有b次(错误)判断M位于A和C之间。然而综合的区间对于a/n是-hCM到∞之间,对于b/n是-∞到-hCM之间,这就类似于线段CB与AC。因为如果我们把ACMB视为正向而M作为起点,C和B的横坐标就变成-CM和MB,A和C的横坐标就分别成为-AM和-CM了。然而AM和MB相对于CM而言,可以视为无穷大。

接下来是莫比乌斯的推导。

为了将直线的例子转换为重量的例子,我们不得不用重量P代替AC,用P+D代替BC。AM=(AC+BC)/2的长度现在成为P+(D/2),线段CM因此对应于D/2, D/2代替前面公式中的CM。此外,a/n等于我们的r/n, b/n等于我们的f/n,这引出了以下表达式,可以直接应用于我们的方法:

或者如果我们将积分

用θ简化表示,那么

前面提到一个事实,就是正误法的精确性或感受性h是平均差误法的一半,但这不影响我们对正误法的应用,因为在这种情况下只有相对值t或h是重要的。必须考虑这些因素,以防有人想要通过正误法比较由平均差误法所得到的结果的绝对值,这样可能要用到θ的积分。对可能误差或r/n或t的变异性的预估也是如此,但这里我们暂时先不讨论。

现在我们转到实践问题上:

我们所涉及的判断程序仅仅是由以下的查表过程组成的,我把这个表称为正误法的基本表,t=hD的值对应于实验确定的分数r/n(如果r/n的数值不能在表中准确地找到,则可以使用插值法)。然后将这个数除以D来确定h的值,即我们想得到的感受性测量值,或者当D恒定时,我们也可以通过获得的t=hD值并使用这种方法直接进行测量,这在许多情况下是非常方便的。

当没有恒定影响(除了恒定重量增量D)存在时,或者这些影响在确定r/n的过程中已被实验设计补偿时,这条规则足以判断哪边的重量是较大的。当情况并非如此时,误差的恒定来源就会混入t值,其现在不再只是依赖h和D(D只表示附加重量),而且还依赖于这些无关变异来源。即使D是恒定的,如果这些变异性的次要来源与D不能保持相对恒定,简单地用t除以D自然也不能让我们得到正确的h,而且t值不能代替h作为可比性的度量。然而即使这样,合理安排实验程序,使用适当的基本表是校正的最简单方法。后面我会分别加以说明。

注意:(1)因为只涉及t或h的比率,我习惯于将t的制表值中所有的数字看作一个整数,而忽略它是小数的事实。[13]下面这张表中所引用的计算值总是采取这种形式。(2)只需要将r/n大于0.5的值制入表中。如果出现小于0.5的r/n,就如下面将要讨论的这种情况中出现的那样,这个情况是实验中一个常见的现象,尤其是发生在D不太大的给定实验条件下,我们必须使用f/n=(n-r)/n而不是r/n,在表中名为r/n的列下查找,并把对应的t值加上负号代入确定hD、hp和hq的表达式中,关于hp和hq后面会说明。(3)表中r/n=1(也就是所有判断均正确的随机事件)对应的t值是无穷值。严格来说,这假定了观察到的数值是无穷的。一般来说我们应该使D足够小而n足够大,以保证这种情况不会发生。

正误法的基本表

译者注:表中的差异值指的是t的差异值,为后一个值减去前一个值的结果,如费希纳前文所述的,他不再使用小数点,而直接用整数形式表达。下同。

我们使用基本表最简便的方法是一劳永逸地取n=100,也就是我们每次分别为100次判断确定r值。较长的系列以100次为单元进行拆分,求出每一部分的t值之后分别加和与求平均值,出于其他原因,这种部分处理的方式都是必需和有用的。之后的唯一要做的就是删掉r/n列中的零和小数点[14],以直接找到通过实验得到的r值。我们可以走捷径,不仅可以通过拆分以形成r/n,而且也出于插值法的需要,因为我们可以在表中精确地查到所有实验所需的r值。

如果我们不将100选作n值,我们就无法在基本表里精确找到合适的r/n值。我们可以很容易地在不同列差异值的帮助下,通过简单插值法确定对应的t,因此我们产生的t值误差大约只是0.0001至0.0002之间,而转换成r/n的误差大约是0.85。这个误差不重要,因为这种观察结果中的 未来当需要使用到符号时,我将还是会遵从提到的符号定义一致的标准,当感觉 尽管时间的和空间上的关系保持一致,但是p和q仍然可能因为内部的因素而导致变化,由于这些客观的条件只能根据人的主观外在表现才能反映出来,出于未知因素的影响,导致这些条件都是富于变化的。

由于内外条件的变化,p和q的结果可能会发生很大的变化。我在各种不同条件下进行的所有实验结果都显示,如果不排除标准重量的轻重、先前手臂疲劳或者单双手操作实验范式对p的影响,就会导致p朝负值方向发展,表现为正值的绝对值减少或负值的绝对值大小增加,或者会从正值变成负值。结果进一步表明,在其他条件一定的情况下,右手单手操作相比于左手而言,p和q值中正值更多,负值更少。结果最终还表明,这些作用的大小和方向本质上并不依赖于D的大小。更多的细节我在这里就不赘述了。

在计算t和获得总体的r/n之前,也可以通过增加四种主要条件的r来补偿p和q的效应,具体方法是在基本表中查找一个共同的t值来代表hD值。这种范式有时候是可以满足要求的,但是对于我来说,这是一种不完全补偿,因为通过这种方法,人们不能得到准确的hD值(并因此也得不到准确的h值),这些值是在不出现上述效应时才能获得的,这一点我即将会说到。

例如我们假设,p的效应会在 我们应该对这样一个事实给予特别的注意,即纯粹的差值总和与纯粹的平均误差(无论是ε还是εq)一样,都会在大小上有轻微的变动,这依赖于由计算出来的偏差是基于偏差总和的平均数得到的,还是将实验结果分为几个部分,分别计算每个部分的平均误差,再分别计算纯粹误差,最后将结果加和或平均而得到的。这个流程讨论过的正误法相类似,都是基于相同的推理。总的来说其他条件保持相同的前提下,偏差与平均差误的总和是更大的,而分到各个部分就变小了。例如,将100个原始偏差作为一个整体时所计算而得的纯粹偏差之和,比将这100个原始偏差分为两部分,每部分均包含50个原始偏差,再分别计算这两部分的偏差之和,之后再相加所得的结果更大。同理,分为两个各包含50个原始偏差得到的和,要大于将其分为4个各包含25个原始偏差得到的和更大,依此类推。然而,这种差别是很小的,除非把这些数据分为非常非常小的部分。

对于为什么会有这种差别,有两个原因。 如果只关注对类似关系的测定,那么在进行不同数量的观察时,可以采用统一m数量或者将总体均分为数个m的方式,我们就永远只需要对有限的m进行测定即可。在这种情况下,由有限的m造成平均误差或偏差总和的减小,对于所有操作的影响程度是相同的。

对于 另一方面,测量绝对感受性的方法又在广延感受领域得到大量应用。目前有很多人正在针对视网膜或皮肤这两个区域,从事着最小可觉大小或最小可觉距离的测定。对于后一个区域而言,最著名的研究是韦伯从心理物理学角度对皮肤最小可觉距离的测量,这项工作是具有前沿性的。这种方法的操作类似测量差别感受性时所用的最小可觉差法,后来很多测量绝对感受性的实验操作都只是借用这一称呼。进行这项测量的另外两种方法,也同样能在绝对感受性测量领域找到类似的对应。

福尔克曼基于简易的观察得到结论,认为构成最小可觉距离的圆规两脚间距并不是绝对固定的,而是在一定的范围内波动。在连续实验中,同样的两点间距设定,有时候能被感觉是分离的,但是有的时候却不能被感觉到分离,只要不超过上限——超过上限就一直能感觉到分离,或者不超过下限——比下限低就总不能感觉到分离。然而,我们不能对这些范围进行绝对精确的测定,但是这个事实,就如我们经验所得的那样,并不能阻止我们在不同的实验中寻找具有可比性的距离。我们可以根据上述方法,再结合下述两种值中的一种来测定常模值,其中一种值是通过设定不同的圆规两脚间距去接触皮肤来找到的近上限值,另一种是通过测定在上下限之间的距离来求得的最小可觉距离平均值,获得的常模值可作为我们测量的基础。如果不是这样的话,韦伯的实验和结果也无法被其他人所证实。可以基于这些观察结果对韦伯的方法进行修正,这个方法类似于正误法,而福尔克曼也确实这样做了。它包括以下两个部分:(1)在上述的上下限之间选定一个两脚间距值,重复使用这个数值进行实验,注意每次使用情况下的结果,并且记录注意到两脚间距存在的次数和没有注意到的次数;(2)在上述区间内选定数个两脚间距值,重复这个操作。在这个例子中,对于给定的两脚间距来说,如果皮肤上的某个特定部分的广延感受性越高,正确判断(即被试可以感知到两脚之间存在着距离)发生的次数就越多,而在保持同样的正确判断次数的前提下,广延感受性越高,圆规两脚间的距离也就越小。任何一个给定正确判断与总判断次数的比值,都可以作为感受性比较的基础,在皮肤的不同部位,通过调整合适的两脚间距来实现这个比值。然而福尔克曼倾向于认为,最好在那些距离被注意到和没有被注意到的比例相同的皮肤位置上,应用这个比值进行研究。由于我们不能对合适的圆规两脚间距进行绝对精确的测量,所以必须通过插值法使我们记录的数值尽量与实验中所使用的间距相对应,才能保证足够的精确度。福尔克曼的实验中应用到了这种方法,证明了触觉感受性中练习效应的作用,具体内容参见《萨克森学会报告》(1858, pp.47 ff.)。其间有趣的实验结果很好地证明了这种方法的效用。

韦伯方法的另外一种变式,即我称之为等效法的方法,已被我与平均差误法联系在一起,应用于触觉领域并且得到发展,两者是类似的。与此同时,韦伯甚至在更早时,就曾使用过相同的方法研究过皮肤不同部位对压力的差别感受性。[20]

正如应用于触觉的这种方法,它的关键是在皮肤不同的两个位置A和B上,交替使用两支圆规A和B,采用一支圆规对应一个位置的形式,比较它们的广延感受性。对于放置在A位置的圆规A,保持其两脚间距为A,调整放置在B位置的圆规B的两脚间距B,直到其带来的感觉与A一致为止。当然实际上,可能会因皮肤上的不同部位感受性的程度不同,而导致实验结果有很大的出入。使用这种方法,可以确定在皮肤的不同部位上,能够产生同样触觉时的两脚间距。它们的倒数可以视为广延感受性的一个量度,但要有大量的实验次数作基础。

至此,有人可能会很轻易地就满足了,认为这个方法灵敏、准确,因为它会得到一致的结果,并且非常可靠,只要皮肤上的各个点能够保持大致相同的感受性程度。它们的一致性可以由不同部位的比较结果得以展示,而可靠性则可以很容易地通过计算结果平均数的概率误差得以证明。然而,如果结果的比值改变了,那这个方法可以对这些改变进行具体的检验。我对实验的同一个部分进行了持续数月的重复,当每天仅只进行少数的实验试次时,我确实看到比值能够保持不变。然而可以确定的是,如果每天经常性地进行大量的实验试次,就会产生严重的练习效应,我观察到这些原本相等的结果逐渐发生改变,总的来说,那些不太敏感部位的结果逐渐向敏感部位的结果靠近,练习更明显地惠及前者而不是后者。

这种方法优于前两个的另一个优点在于,它没有将对皮肤感受性的比较仅仅局限于最小可觉距离,而是可以在任意给定距离条件下进行比较。另一方面,也有一个劣势,它只能得到绝对感受性的相对性数据,而在一个最小可觉情况下获得的数值(或者是可觉的情况和不可觉的情况出现的比例相等时,对应的感受性值)会导致一个差距,这个差距值是以一种绝对的方式来定义皮肤某一给定区域的绝对感受性值。因此,必须允许这些方法中的每一种都能以自己独特的方式起作用。

很容易看到,在等效法中使用的程序从本质上来说和平均差误法中使用的是相同的,仅仅是对圆规两脚间距的调整方式不同,但是有人发现对于皮肤上的测试点而言,用于比较的不是点之间的距离差异而是距离大小的比值。然而,我们也必须考虑被比较的距离比值——标准距离与可变距离的比例——采用的是平均差误法,我们还必须考虑等效法中每个两脚间距B与平均两脚间距B之间的差值,就如校正误差Δ中的做法一样。根据这些想法,那么等效法本质上只是平均差误法的一般化形式,反过来,平均差误法是等效法的一种特殊情况,在所有可能的位置,人们都可用B与A相比较,选择A并将其当作标准距离,将B当作可变距离。类似于平均差误法中常误和校正可变误差的关系效应,在平均差误法中也被再次发现,只是以一种更一般化的方式。与平均差误法中一样,等效法也需要注意与前一种方法相关的各种注意和预防措施。

每一种比较的反向关系是特别重要的。例如,当已经建立了从B(嘴唇)到A(下巴)的等价关系,那也必须通过相等的实验次数测定从B(下巴)到A(嘴唇)的互补等价关系。每个结果应该分开记录然后计算平均数,避免常误导致的单侧化效应。我的《测量方法》一书中将会给出充分的证据和解释来说明为何这种预防措施如此重要。这种情况下的常误大小也可以通过简单的计算得出。

* * *

注释:

[1] 特别参见其对触觉和一般感受性的著作以及他的《收集的程序》(Programmata collecta)。

[2] Vierordt''s Arch.,1852,Ⅺ,p.844.

[3] Vierordt''s Arch.,1856, XV(2),p.185 oderPogg.Ann., XCVIII, p.600.

[4] 例如,斯坦海尔在他的《亮度测量要素》(Elemente der Helligkeitsmessungen,p.75)中提到的那样,以及朗吉耶(Langier)在《法国科学院进展》(Comp.rend., XLIV, p.841)中论</a>述的,等等。

[5] 大数定律是以确切的数学形式表达了大量重复出现的随机现象的统计规律性,即频率的稳定性和平均结果的稳定性,并讨论了它们成立的条件。——译者注

[6] 对于还没有加以处理的常误,这条警示是非常重要的。

[7] 此外,伦茨和沃尔夫提到了他们采用正误法进行的关于声音的实验,一个人倾向于把先听到的声音知觉为更响,而另一个人觉得 [10] 当大量的试次被分成几部分时,n就变小了,这样每个部分中的准确性就降低了,但是我们可以在后面对部分的结果进行整合时加以补偿。

[11] 由于我们所涉及的差别感受性是随着P变化的(只要D很小就不会随D变化),所以相同感受性条件下的实验需要恒定的P。

[12] 鲁道夫·范·科伊伦(Ludolph van Ceulen, 1540—1610),数学家,以计算π值或称鲁道夫常数闻名,他最后运算到小数点后35位。在费希纳的时代,π的十进制等效值一般被称作是鲁道夫常数。——译者注

[13] 即在下表中的小数,费希纳均把它们去掉小数点视作整数,尤其是在差异值这一列中可以明显地看出,后文中所有的数据均是这样处理的。——译者注

[14] 也就是乘以次数100。——译者注

[15] 即我们现在通用的缝纫针。——译者注

[16] 通过我自己所做过的一些比较,使用无手柄的圆规时,实验过程中必须握着它的两腿,这样会造成更大的恒定和可变误差。

[17] 这种误差现在被称为标准差,但在这里仍然沿用费希纳的叫法。——译者注

[18] 即对π进行了取整的处理。——译者注

[19] 甚至连校正系数

也仅仅是一个整数的近似值,因为它不能以一种有限的形式表达,但这种取整所产生的偏差是很小的。

[20] Progr.coll.,p.97.

打赏
回详情
上一章
下一章
目录
目录( 14
APP
手机阅读
扫码在手机端阅读
下载APP随时随地看
夜间
日间
设置
设置
阅读背景
正文字体
雅黑
宋体
楷书
字体大小
16
月票
打赏
已收藏
收藏
顶部
该章节是收费章节,需购买后方可阅读
我的账户:0金币
购买本章
免费
0金币
立即开通VIP免费看>
立即购买>
用礼物支持大大
  • 爱心猫粮
    1金币
  • 南瓜喵
    10金币
  • 喵喵玩具
    50金币
  • 喵喵毛线
    88金币
  • 喵喵项圈
    100金币
  • 喵喵手纸
    200金币
  • 喵喵跑车
    520金币
  • 喵喵别墅
    1314金币
投月票
  • 月票x1
  • 月票x2
  • 月票x3
  • 月票x5