每一个结论假定先有前提;这些前提本身或者是自明的而不需要证明,或者只能依赖其他命题而建立,鉴于我们不能这样追溯到无穷,每一门演绎科学,尤其是几何学,必须以某一数目的不可证明的公理为基础。因此,有关几何学的论著,都是以陈述</a>这些公理开始的。不过,在这些公理中,也要有所区分:例如,“等于同一量的一些量彼此相等”就不是几何学命题,而是分析命题。我认为它们是先验分析判断,我不愿去理会它们。
可是,我必须强调几何学所特有的其他公理。大多数专著中都明确地陈述了这三个公理:
1°通过两点只能作一条直线;
2°直线是一点到另一点的最短的路径;
3°通过一给定点只能引一条直线与已知直线平行。
一般地,虽然 关于公理的本性。大多数数学家仅仅把罗巴契夫斯基几何学视为纯粹的逻辑珍品;可是,他们之中的有些人走得更远。由于许多几何学是可能的,我们的几何学肯定是真的吗?经验无疑教导我们,三角形的角之和等于两直角;但是,这是因为我们所涉及的三角形太小了;按照罗巴契夫斯基的观点,差别正比于三角形的面积;当我们计算较大的三角形时,或者当我们的测量变得更精确时,这种差别不能被感觉到吗?因此,欧几里得几何学只不过是暂定的几何学。
为了讨论这种意见,我们首先应该问我们自己,几何学公理的本性是什么?
它们是像康德(Kant)所说的先验综合判断吗?
于是,它们以如此强大的力量强加于我们,以致我们既不能设想相反的命题,也不能在其上建设理论大厦。那里不会有非欧几何学。
为了确信这一点,让我们举一个名副其实的先验综合判断,例如下述我们在 如果一定理对数1为真,如果业已证明,倘若它对n为真,则它对n+1亦为真,那么它将对所有的正整数都为真。
可是,企图否认这一命题而摆脱它,企图建立一种类似于非欧几何学的伪算术——那是不能做到的;乍一看,人们甚至会被诱使认为这些判断是分析的。
再者,重新谈谈我们虚构的无厚度的动物吧,我们简直不能承认,假如它们的心智像我们的一样,它们会采纳与它们的一切经验相矛盾的欧几里得几何学。
我们能够因此得出几何学公理是经验的真理的结论吗?可是,我们没有做关于理想直线或圆的实验;人们只能针对物质的客体做实验。这样一来,应该作为几何学基础的实验能够建立在什么之上呢?答案是容易的。
我们在上面已经看到,我们在不断推理时,几何图形好像固体一样起作用。因此,几何学能够从经验中借用的东西也许是这些固体的性质。光的性质及其直线传播也导致了几何学的某些性质,尤其是射影几何学的性质,以至于从这种观点看来,人们会被诱使说,度量几何学是固体的研究,而射影几何学则是光的研究。
但是,困难依然存在,而且它是难以克服的。假如几何学是实验科学,它就不会是精密科学,它就应该是继续修正的学科。不仅如此,从此以后每天都会证明它有错误,因为我们知道,没有严</a>格的刚体。
因此,几何学的公理既非先验综合判断,亦非实验事实。
它们是约定;我们在所有可能的约定中进行选择,要受实验事实的指导;但选择依然是自由的,只是受到避免一切矛盾的必要性的限制。因此,尽管决定公设取舍的实验定律仅仅是近似的,但公设能够依然严格为真。
换句话说,几何学的公理(我不谈算术的公理)只不过是隐蔽的定义。
于是,我们想到这样一个问题:欧几里得几何学为真吗?
这个问题毫无意义。
这好比问米制是否为真,旧制是否为假;笛卡儿坐标是否为真,极坐标是否为假。一种几何学不会比另一种几何学更真;它只能是更为方便而已。
欧几里得几何学现在是、将来依然是最方便的:
1°因为它是最简单的;它之所以如此,不仅仅由于我们的心理习惯,或者由于我不知道我们对于欧几里得空间具有什么直接的直觉;它本身是最简单的,恰如一次多项式比二次多项式简单;而球面三角的公式比平面三角的公式复杂,对于不了解这些公式的几何意义的分析家来说,情况似乎依然如此。
2°因为它充分地与天然固体的性质符合,这些固体是我们的手和我们的眼睛所能比较的,我们用它们制造我们的测量工具。