1. 分类应当是什么
当我们无论何时考虑由无限数目的物体组成的集合时,通常的逻辑规则还能应用吗?乍看起来,这是一个尚未被询问过的问题,可是它却引导我们去考查,专门研究无限的数学家何时会突然遇到某些表面上的矛盾。这些矛盾是出自逻辑规则被误用的事实呢,还是出自它们在它们的适用领域之外、即在仅由有限数目的物体形成的集合之外不再有效的事实呢?我认为,就这个课题讲几句话,给我的读者提供一个关于这个问题所引起的争论的观念,并不是没有意义的。
形式逻辑无非是研究对所有分类都是共同的那些性质;它告诉我们,是同一个团的成员的两个士兵正是由于这个事实而属于同一个旅,从而属于同一个师;三段论法的整个理论被归结为这一点。可是,这种逻辑规则是有效的必要条件是什么呢?它就是,所采用的分类是不可改变的。我们了解到两个士兵是同一个团的成员,我们想要得出结论说,他们是同一个旅的成员;我们有权利这样做,倘若在进行我们的推理所消磨的时间内,两人之一没有从一个团调到另一个团的话。
所揭示出的悖论完全来源于忘记了这个十分简单的条件:分类依赖的基础并非不可改变,它并不能够如此;预防办法就是着手宣布它是不可改变的;但是,这种预防办法是不充分的。有必要提出它事实上是不可改变的,但有一些场合,在其中这是不可能的。
请容许我再次提及罗素(Russell)先生引用的例子。毕竟,他提到这个例子是要驳倒我。他想证明,困难并不是来自实无限的引入,因为即使在只考虑有限数时也能够遇到它们。我以后将返回到这一点,但这不是现在要考虑的课题,我之所以选中这个例子,是因为它是有趣的,它使我刚才指出的事实显得更为重要。
用具有不到一百个法语单词组成的语句不能定义的最小整数是什么呢?而且,这个数存在吗?
是的;因为用一百个法语单词,我们只能构造有限数目的语句,由于在法语字典中,单词的数目是有限的。在这些语句中,将存在一些没有意义的或不定义任何整数的语句。但是,这些语句中的每一个至多能够定义一个单个的整数。因此,能够以这种方式定义的整数的数目是有限的;所以,肯定存在着一些整数不能这样来定义;在这些整数当中,肯定有一个比所有其他整数都小。
否;因为要是这个整数存在,它的存在便意味着矛盾,由于它可以用不到一百个法语单词的语句来定义;就是说,可以用断言它不能被定义的那个语句来定义。
这种推理停留在把整数分为两个范畴的分类上:一个范畴能用不到一百个法语单词的语句来定义,另一个范畴则不能。在询问这个问题时,我们暗中宣布,这种分类是不可改变的,我们只有在它明确地建立起来之后才能开始我们的推理。可是,这是不可能的。只有当我们审查了所有由不到一百个单词组成的语句时,只有当我们排除掉那些没有意义的语句时,只有当我们明确地确定了具有意义的语句的意义时,分类才能够是决定性的。但是,在这些语句中,存在着一些只有在分类固定之后才能够具有意义的语句;它们是涉及到分类本身的语句。总而言之,数的分类只有在语句的选择完成之后才能够固定下来,而这种选择也只有在分类被确定之后才能够完成,以至于无论分类还是选择永远也不能终止下来。
当涉及无限的集合时,甚至会更频繁地遇到这些困难。让我们设想,需要对这些集合之一的元素进行分类,分类的原则依赖于被分类的元素与整个集合的某种关系。这样的分类在任何时候能够被认为是确定的吗?不存在实无限,当我们说无限的集合时,我们理解的是我们能够把新元素不停地添加到其中的集合(类似于为等待新订户,永远没完没了的订购单)。因为分类不能彻底地完成,除非在订购单结束之时;每当新元素添加进集合中,这个集合都要被修正;因此,有可能修正这个集合和已被分类的元素的关系;由于这些元素被放置在这个或那个抽屉内与这种关系一致,因而能够发生下述情况:一旦这种关系被修正,这些元素将不再处于合适的抽屉内,而且必须移动它们。只要引入新元素,就不得不担心,这项工作可能全都得重新开始;因为没有新元素被引入的事从来也不会发生;因此分类将永远也不会被固定。
我们由此在适用于无限集合的元素的两种分类之间作出区分:断言的(predicative)分类,它不会由于新元素的引入而扰动;非断言的(non-predicative)分类,在这种分类中,新元素的引入必然要引起不断的修正。
例如,让我们假定,我们按照整数的大小将它分为两族。我们不考虑一个数与其他整数集的关系,就能够分辨出这个数比10大还是比10小。大概,在头100个数被确定之后,我们就知道,在它们之中哪些小于10、哪些大于10。然后,当我们引入101这个数时,或者引入任何一个接着它的数时,在头100个整数内,小于10的那些数将依然小于10,大于10的那些数将依然大于10;分类是断言的。
相反地,让我们设想,我们希望把空间中的点进行分类,我们在能够用有限数目的单词来定义的点和不能用有限数目单词来定义的点之间作出区分。在可能的语句中,将存在着一些涉及到全部集合,也就是涉及到空间或空间某些部分的语句。当我们在空间中引入新点后,这些语句将改变意义,它们将不再定义同一个点;或者,它们将失去一切意义;要不然,它们将获得意义,虽然它们起先没有任何意义。于是,不能定义的点将变得能够定义,另外一些能够被定义的点将不能被定义了。它们将必须从一个范畴变到另一个范畴。分类将不是断言的。
有一些好心人,他们相信,人们可以推理的唯一对象是那些能够用有限数目的单词定义的对象。我更加乐于认为他们是好心人,因为我自己马上要为他们的见解辩护。因此,可以认为前面的例子是拙劣的选择,但是很容易修正它。
为了对整数或空间中的点进行分类,我将考虑定义每一个整数或每一个点的语句。由于会发生同一个数或同一个点能够用许多语句来定义的情况,我将按字母顺序排列这些语句,并将在这些语句中选择 1.这个规律能够用有限数目的词来陈述。
2.给定任何整数,可以在空间中找到对应的点,这个点将被完全确定,毫无歧义;这个点的定义由两部分组成,即整数的定义和对应规律的陈述,它们能够被归结为有限数目的词,因为这个整数能够用有限数目的词来定义,而对应规律能够用有限数目的词来陈述。
3.给定空间中的点P,我假定用有限数目的词定义该点(我自己没有摒弃使用这个定义与对应规律本身的关联,这在康托尔的证明中是必不可少的),那么将存在一个整数,该整数将毫无歧义地用对应规律的陈述和点P的定义来确定。
4.对应规律必须是断言的,也就是说,如果使点P对应于一个整数,那么当在空间中引入新点时,必须仍然使这个点P对应于同一个整数。那就是康托尔所证明的东西,这依然保持为真。我们注意到包含在这个简短命题中的复杂意义:空间中点的基数比整数的基数大。
于是,我们不得不作出什么结论呢?每一个数学定理必须能够加以验证。当我陈述这个定理时,我宣称,我将试图对它进行的所有验证都会成功;即使这些证明之一需要超过一个人的能力的艰辛工作,我断言,如果许多代人——即使需要一百代人——认为着手进行这种验证是恰当的,它将依然会成功。该定理没有其他意义,如果我们在它的陈述中提到无限的数目,那么这将仍为真。但是,由于验证仅能够适用于有限的数目,所以由此可得,每一个关于无限数的定理,或者特别是所谓的无限集,或超限基数,或超限序数等等,只能是陈述有限数目的命题的简明方式。如果它不是这样,这个定理将不是可验证的,而且如果它是不可验证的,它将是无意义的。
由此可得,不可能存在任何关于无限数的明显的公理;无限数的每一个特性无非是有限数的特性的翻译。正是后者,它可以是明显的,而且也许有必要通过把前者与后者进行比较和通过表明翻译是严格的来证明前者。
7.小结
导致某些逻辑学家的悖论是由这样的事实引起的:他们不能避免某些循环论证。当他们考虑有限的集合时,就发生这种情况,但是当他们对处理无限集合提出要求时,这种情况会更为经常得多地发生。在第一种情况下,他们能够容易地逃出他们落入的陷阱;或者,更严格地讲,他们自己设置了他们选好要落入的陷阱,他们甚至被迫十分小心地不错过这个陷阱;简而言之,在这种情况下,悖论只不过是游戏而已。由无限概念产生出来的悖论是十分不同的;逻辑学家在没有故意设置它的情况下落入其中是经常发生的,即使预先告诫了,他们还是感到不安。
由于不止一个充分的理由,作出解决这些困难的尝试是有趣的,但是这些尝试并不完全令人满意。策默罗先生想构造一个无缺陷的公理系统;可是,这些公理仅仅能够被视为任意的规定,因为有必要证明这些规定不是互相矛盾的,而且进行一次全面大扫除后再没有留下任何作为这样的证明的基础的东西。因此,必须使这些公理是自明的。现在,它们通过什么机制被构造出来?这些被采纳的公理对有限的集合为真;它们不能被推广到所有无限的集合,这种推广只有对它们之中或多或少任意地选择的某个数目才能进行。而且,在我看来,正如我在上面所说的,没有一个关于无限集合的命题能够在直觉上是明显的。
罗素先生比较清楚地认识到要克服的困难的本性。无论如何,他没有完全克服他,因为他的类型谱系假定,序数理论已被阐明。
至于我,我可以提出,我们受下述法则的指导:
1.永远不考虑任何除了能够用有限数目的词定义的对象。
2.永远不忽略这样的事实:每一个关于无限的命题必须是关于有限的命题的翻译和精确陈述。
3.避免非断言的分类和定义。
迄今提到的所有研究工作者都有共同的特征。他们打算把数学教给还不了解在无限和有限之间存在区别的学生;他们没有很快教给学生这一区别由什么组成;他们在开始不涉及这种区分的情况下教给学生关于无限所能了解的一切。再者,在他们使学生漫游的遥远领域,他们向学生指明隐藏有限数的小角落。
对我来说,这似乎是心理上的虚伪;人类的心智自然不会以这种方式进行,尽管我们可以使我们自己摆脱困境而没有过多的自相矛盾的灾难,可是这种方法却不能不与健全的心理学相对立。
罗素先生无疑将告诉我,它并不是心理学问题,而是逻辑和认识论问题;而我将被导致回答,不存在独立于心理学的逻辑和认识论;表明这种信念也许将结束这场讨论,因为它将使不可弥补的观点分歧变得明显起来。
* * *
[1] Menge,德语词汇,相当于set(集)。——中译者注
[2] domain是英语词汇,Bereich是德语词汇。——中译者注
[3] subset是英语词汇,Untermenge是德语词汇。——中译者注
[4] Mengen是Menge的复数。——中译者注
[5] definit的德语词。——中译者注