第十三节
接着这些例子,我们一般地得出结论:使思想适应事实的结果是在被比较和进一步被适应的判断中系统阐明的。如果存在矛盾,能够放弃较少有成效的判断,而有利于较多有成效的判断。哪一个被视为比较权威的,当然取决于人们对该领域熟悉的程度,取决于人们在理智思维中的经验和实践,取决于该时期的习惯的观点。例如,有经验的物理学家和化学家将不把权威授予违背决定论原理、能量和质量守恒原理的思想,而建造水动机的业余爱好者则很少为此而烦恼。在牛顿时代,假定超距作用需要很大的勇气,即使作为某种还有待于说明的东西提出来。后来,成功使得这一进路如此普通,以致没有一个人冒犯它。今天,我们再次感到强烈需要通过空间和时间连续地追踪所有的相互关联,致使我们不能假定直接的超距作用。在布莱克之后,怀疑热的量的恒定立即成为大胆的行动,而在五十年代,却存在着放弃他的假定的强烈倾向。一般而言,每一个时期都偏爱在其指导下获得最大实际的和理智的成功的判断。伟大的和有远见的探究者往往处在这样一个位置,即他们必定反对流行的观点,从而有助于开始视野上的转折;即使迄今是权威的那些判断,现在也不得不与仅仅在别处被遗弃的新判断妥协,作为结果二者通常被修正;请目睹一下克劳修斯和W.汤姆孙(开耳芬勋爵(Lord Kelvin)的热力学探究和法拉第-麦克斯韦的电理论吧。
第十四节
被比较的判断从一开始就可能是相容的,以致似乎不需要适应。是否存在对和谐的进一步要求,则取决于思想者的个性和他在审美表象和逻辑经济方面要求的东西。在一些头脑中,形形色色的观念能够和平共处,因为它们属于从未遇到过的领域:一个人在一个领域可能是理智清醒的,可是在另一个领域却奇怪他是迷信的,尤其是当他恰好以非经常的心境对它作反应时,从而容许因案例而异发出不同的音域,而不会为整个思想领域的较大有机关联费脑筋。与此对照,我们有像笛卡儿、牛顿、莱布尼兹、达尔文等人这样的探究者。
第十五节
当我们成功地找到独立判断的最小集合,而其余的东西作为逻辑推论能够从中演绎出来时,才在一个领域达到相容判断的经济的和有机的协调之理想。一个例子是欧几里得几何学。这样演绎出的判断本来可以以迥然不同的方式被发现,事实上情况通常也是如此。在那种情况下,演绎借助较简单的和较熟悉的判断使该判断变得更容易理解,也就是说,演绎有助于说明某种被怀疑的东西,或者把它建立在某个原来不是较简单的东西的基础上,一句话即提供证明。如果被演绎的判断先前是未知的,而是首次在论证中发现的,那么我们便具有演绎的发现。
第十六节
几何学的简单的、一般表达清楚的和熟悉的题目,完全适宜于阐明判断在一起的配合。例如,让我们画任何四条直线与圆相切而形成四边形 ABCD(图2)。我们就它能够说的一切并非对任何四边形都有效,因为在这里边是切线,因而必须与圆的性质相容:到切点的半径与切线成直角。来自一个顶点的两条切线关于顶点到圆心的连线处于对称,从顶点到切点的线段相等。因此,两对边之和等于其余两对边之和。这种对称性质毫无例外地属于与圆外切的四边形的性质。如果我们画一条割线或在圆外画一条线代替AD以完成四边形,那么该性质就不再适用了。同样地,人们不能在每一个四边形内接圆:因为那个圆是由三条切线、或由相邻切线之间的两个角平分线之交决定的。
第四边强加了一般与其他边不相容的要求。这样的判断在一起的配合能够方便地以问题以及它的解的说明的形式给出,或者作为演绎发现给出。在欧几里得或亚里士多德的逻辑项中的系统阐明未出现困难。J.F.弗里斯详细地讨论了这个例子,德罗比施(Dro-bisch)的讨论更有吸引力。
第十七节
不是我们叙述一部分的逻辑形式是从科学思想的实际例子中通过抽象达到的。然而,任何像在几何学中的这样一类的例子都表明,仅仅这些形式的知识是没有多大用处的:它至多可以有助于核验思想路线,而无助于发现新思想。事实上,思想并不是以空洞的形式进展的,而是依据生动地呈现出来的内容,或直接地或通过概念进展的。在几何学演绎中,直线将时而被看作是它的位置,时而被看作是它的长度,或者视为切线、半径的法线、对称图形的一部分;在平行四边形中,我们必须时而注意面积,时而注意边、或对角线、或角之比。如果我们不熟悉所有直观的和概念的关系以及如何把它们相互转化,如果对被推定的关联的兴趣没有把我们的注意力引向正确的路线,那么我们肯定不会作出几何学发现。空洞的逻辑公式不能代替事实的知识。不管怎样,代数和几何学的三段论的考察一般表明,像这样的对思想的关注和理智操作的抽象形式的符号表示决不是没有任何长处。任何一个不会进行这些操作的人在没有这样的帮助的情况下,无论如何也不能从这些方法中获得好处。不过,当我们考虑包含频频重现的相同的或相似的运算的思想操作的整个序列时,符号表示大大减轻了必需的心理努力,从而省下努力对付不能用符号解决的比较重要的新案例。事实上,数学家为了他们自己的意图,在他们的符号论中发展了最有价值的符号逻辑。数学思想操作是如此千变万化,以致亚里士多德逻辑的简单分类不能囊括它们。因此,数学产生了它自己的更为综合的符号逻辑,其操作决不仅仅是定量的。开端返回到莱布尼兹;在 19世纪中期的德国,唯一的追随者似乎是F.E.贝内克(Beneke)。它被留给像H.格拉斯曼(Grassmann)、布尔(Boole)、E.施罗德(Schroder)、伯特兰 · 罗素( Bertrand Russell)等等这样的数学家,从而恢复了莱布尼兹的路线。